An Experience in Testing the Security of
Real-world Electronic Voting Systems

Davide Balzarotti, Greg Banks, Marco Cova, Viktoria Felmetsger, Richard Kemmerer, William Robertson,

Fredrik Valeur, and Giovanni Vigna

Abstract—\Voting is the process through which a democratic society determines its government. Therefore, voting systems are as
important as other well-known critical systems, such as air traffic control systems or nuclear plant monitors. Unfortunately, voting
systems have a history of failures that seems to indicate that their quality is not up to the task.

Because of the alarming frequency and impact of the malfunctions of voting systems, in recent years a number of vulnerability analysis
exercises have been carried out against voting systems to determine if they can be compromised in order to control the results of
an election. We have participated in two such large-scale projects, sponsored by the Secretaries of State of California and Ohio,
whose goals were to perform the security testing of the electronic voting systems used in their respective states. As the result of the
testing process, we identified major vulnerabilities in all the systems analyzed. We then took advantage of a combination of these
vulnerabilities to generate a series of attacks that would spread across the voting systems and would “steal” votes by combining
voting record tampering with social engineering approaches. As a response to the two large-scale security evaluations, the Secretaries
of State of California and Ohio recommended changes to improve the security of the voting process. In this paper, we describe the
methodology that we used in testing the two real-world electronic voting systems we evaluated, the findings of our analysis, our attacks,
and the lessons we learned.

Index Terms—Voting Systems, Security Testing, Vulnerability Analysis

*

1 INTRODUCTION

LECTRONIC voting systems are becoming a pivotal
E element of many modern democracies. National
governments and local administrations are continuously
looking for ways to streamline the voting process and
increase voter participation. The use of computer-based
systems to collect and tally votes seems to be a logical
and effective choice to accomplish these goals.

Unfortunately, real-world implementations of voting
systems have been marked by a series of problems that
worry both technologists and the general public. For ex-
ample, a report published in January 2008 describes the
problems encountered in Sarasota County, Florida, when
counting the votes in the November 2006 Congressional
District 13 election [1]. In this case, 17,846 ballots (14.9%
of the total number of votes) cast on electronic voting
machines showed no vote for either candidate in the
race. In addition, the race was determined by only 369
votes. The report described the system responsible for
recording and tallying the votes as a “badly designed,
shoddily-built, poorly maintained, aging voting system
in a state of critical breakdown.”

A quote attributed to Stalin captured the critical role
of voting systems years before computer-based systems

o D. Balzarotti is with the Eurecom Institute in Sophia Antipolis, France.
E-mail: Davide.Balzarotti@eurecom.fr

o G. Banks, M. Cova, V. Felmetsger, R. Kemmerer, W. Robertson, F. Valeur,
and G. Vigna are with the Department of Computer Science, University
of California, Santa Barbara, CA, 93106-5110.
E-mails: {nomed,marco,rusvika,kemm,wkrfredrik,vigna}@cs.ucsb.edu

became widespread: “Those who cast the votes decide
nothing. Those who count the votes decide everything.”
Because of their critical role in determining the outcome
of an election, electronic voting systems should be de-
signed and developed with the same care that is given to
other critical systems, such as air traffic control systems
or nuclear power plant monitors. However, a number of
recent studies have shown that most (if not all) of the
electronic voting systems being used today are fatally
flawed [2], [3], [4] and that their quality does not match
the importance of the task that they are supposed to
carry out.

Until recently, electronic voting systems have been
certified by third-party evaluation companies. Most of
the time, these companies test the general functionality
of the systems, their usability, and their accessibility for
disabled voters. However, in the past no substantial se-
curity testing was performed to identify serious security
vulnerabilities that affected multiple components of the
system and could result in an overall failure to provide
reliable vote tallying.

Recently, a number of US states (in particular Califor-
nia, Ohio, Florida, and New York) have commissioned
studies to test the security of the electronic voting ma-
chines that were to be used in forthcoming elections.
Our team was involved in the California Top-To-Bottom
Review (TTBR) in July 2007 [5] and in Ohio’s Evaluation
& Validation of Election-Related Equipment, Standards
& Testing (EVEREST) in December 2007 [6]. In the for-
mer, we evaluated the Sequoia voting system [7], [8],
while, in the latter, we evaluated the ES&S system. Our

task was to identify, implement, and execute attacks
that could compromise the confidentiality, integrity, and
availability of the voting process. As a result of the
security testing performed in these studies, the systems
used in California were decertified and those used in
Ohio were recommended for decertification.

In this paper, we present the methodology and tools
that we developed in the security testing of these vot-
ing machines, the results of our analysis, the attacks
that we devised against the systems, and the lessons
learned in the process of testing real-world, widely-used
implementations of voting systems. These systems have
peculiar characteristics that make the testing of their
security particularly challenging. We believe that our
experience can help other researchers in this field, as well
as policy makers and certifying organizations, develop
more rigorous procedures for the security testing of
voting systems.

We have studied the systems and voting procedures
described in this paper in the context of US-based elec-
tions. Therefore, the results and lessons learned reported
here might not necessarily apply without modification to
other countries. However, we believe that the problems
we found would affect any election that relies on the
voting systems that we evaluated. In addition, we are
confident that some of the lessons learned in our ex-
perience with the security evaluation of the two voting
systems that we analyzed apply to other voting systems
and election procedures as well.

The rest of this paper is structured as follows. In
Section 2, we discuss the underlying motivation for
performing the security evaluation of the two electronic
voting systems that we analyzed. In Section 3, we
present some historical remarks on the voting process,
and we discuss related work that provided context for
the evaluation efforts in which we were involved. In
Section 4, we provide an overview of electronic voting
systems, and we describe the challenges that one faces
when testing the security of real-world voting systems.
In Section 5, we present the methodology that we de-
vised (and followed) during the evaluations, while, in
Section 6, we present the tools and techniques that we
developed in order to support our testing approach. In
Section 7, we present, in detail, the findings of our analy-
ses. Then, in Section 8, we show how the vulnerabilities
we found could be used to mount a series of attacks
whose goal is to tamper with the outcome of an election.
Finally, in Section 9, we describe the lessons we learned
in evaluating real-world electronic voting systems, and,
in Section 10 we conclude.

2 MOTIVATION

Testing and evaluating any system, if done right, is
generally a time-consuming and tedious endeavor. One
might ask then, “why dedicate all this time and effort
to test the security of these particular systems?” In other
words, what makes this a novel and useful activity from

a scientific research perspective? There are several an-
swers to this question, all of which provide the necessary
motivation needed for this research.

First and foremost, the security testing of electronic
voting systems is not a well-documented or often-
undertaken effort. As was mentioned previously, the
testing and certification of these systems is generally
focused on usability, is funded by the company that is
to profit from the system, and is a private affair (i.e., the
results of testing are never made public). The TTBR and
EVEREST reviews are the first of their kind, providing
the project participants with not only source code, but
also the machines and guidance necessary to recreate a
realistic electronic voting system. This allowed for the
actual execution of attacks that were previously only
theoretical because of physical limitations (e.g., the lack
of hardware and system binaries) and the validation that
the attacks were actually effective.

Second, the nature of such systems (i.e., their common
aim and ability to perform a function defined by a
set of laws and state-mandated procedures) gives rise
to a common high-level design among these systems.
This common framework deserves a well-vetted and
publicly-executed testing methodology. While current
standards provide a “checklist” of characteristics that
must be verified, there are no guidelines or suggestions
on how these characteristics can or should be verified.

Finally, the thorough third-party evaluation of such
systems necessitates a certain amount of skill and knowl-
edge that we, as systems security researchers, possess:
namely the ability to reverse engineer complex systems
in an effort to violate assumptions and successfully co-
erce a system into an undesirable, insecure state. The two
evaluations in which we participated were interesting
exercises in applying this knowledge in novel ways to
real-world systems in order to develop techniques and
tools that can serve to educate and direct future voting
system testing.

The focus of these evaluations, then, was twofold:

1) Gain testing experience that can be used to help
develop a general methodology for testing electronic
voting systems and, thus, provide a stepping stone
for future auditors and researchers.

2) Utilize our reverse engineering experience to expose
vulnerabilities in the voting system components that
we analyzed, develop tools to interact with them,
and gain a deeper understanding than would be
possible otherwise.

The approach we followed and the results we obtained

are reported in the following sections.

3 ELECTRONIC VOTING HISTORY AND RE-
LATED WORK

The conduct of elections has changed numerous times
and in many ways in the course of democracy [9]. In
particular, if one looks at the history of voting in the
US, it seems possible to recognize a common, repeating

pattern driving its evolution. The introduction of new
voting requirements (e.g., the right to voter privacy)
and the manifestation of limitations of the existing
voting technology repeatedly opened the way to the
introduction of novel voting equipment. This cycle of
inadequacies and technical advancements has motivated
some authors to talk about a “fallacy of the technological
fix” in the context of voting [10].

It is possible to identify several examples of these
turning points in voting technology. For example, the
secret, or “Australian,” ballot, in which voters mark
their choices privately, on uniform ballots printed at
public expense and distributed only at polling places,
was introduced in 1888 to substitute for the practice
of voting openly (e.g., viva voce) or on custom-made,
partisan paper ballots, which made it all too easy to
intimidate voters and otherwise influence the vote cast-
ing process. Mechanical lever machines became the most
commonly used voting device in larger urban centers
by the 1930s, when it was clear that the secret ballot
was open to subjective ballot interpretation and, thus,
was vulnerable to manipulative vote counting. These
new machines brought with them additional novelties,
such as the use of private curtained booths and new
ballots using tabular layouts. Unfortunately, by record-
ing only the total of the votes cast rather than the
individual votes, they also made it impossible to perform
recounts or otherwise verify the final results. The next
wave of innovation occurred in the early 1960s, when
first punch card machines and, later, optical mark-sense
scanners were introduced. These machines promised
more accurate vote recording and faster tallying. Finally,
direct recording electronic (DRE) machines started to be
utilized for voting purposes around 1975.

The decisive transition toward electronic voting sys-
tems, which are currently in use in the vast majority of
the US, happened only after the 2000 US presidential
election. In the decisive Florida race, Bush led Gore by
537 votes out of over 6 million votes cast, amid a number
of irregularities and problems, some of which have
been attributed to the use of old and inadequate voting
technology. In particular, controversy raised around the
confusing design of certain ballots (e.g., the infamous
“butterfly” ballot used in Palm Beach County) and the
appropriate method of counting ballots in the pres-
ence of “hanging” or “dimpled” chads (incompletely-
punched holes in ballots with, respectively, one or more
corners still attached or all corners attached but a visible
indentation).

The legislative answer to the Florida debacle was the
Help America Vote Act (HAVA) [11], which was enacted
in October 2002 and aimed at completely reforming elec-
tion administration [12]. In particular, HAVA established
minimum election standards, thus providing a least com-
mon denominator in an otherwise patchwork of different
voting systems and regulations. Second, it created the
Election Assistance Commission (EAC), with the tasks
of acting as a national clearinghouse regarding election

administration, developing and adapting voluntary vot-
ing system guidelines, and testing and certifying voting
systems through accredited laboratories. Finally, the act
provided $3.86 billion in funding over several years
to replace older voting technology, train poll workers,
increase accessibility, and start research and pilot studies.

The newly-passed legislation and the available fund-
ing convinced many states and counties to adopt elec-
tronic voting systems. As of 2007, $1.2 billion remained
available to states, with the majority of the funds being
expended for acquiring voting systems and technolo-
gies [13].

Unfortunately, electronic voting systems were far from
being the final solution to voting problems. In fact,
technology alone does not guarantee the absence of
irregularities or problems. For example, in the 2008 sena-
torial race in Minnesota, almost 7,000 ambiguous ballots
were challenged by the two leading campaigns, even
though the vast majority of the counties used modern
optical scanners for counting ballots. After a review of
the disputed ballots, the victor was decided by a mere
225 votes [14]. To put these figures in perspective, it is
worthy to remember that Minnesota has 4,131 precincts.
In addition, new technologies have often been found
to be faulty. Citizen advocacy groups and others have
collected and reported malfunctions associated with the
use of electronic voting systems. It is not uncommon
for these lists to contain hundreds of documented fail-
ures affecting essentially all of the existing voting sys-
tems [15], [16], [17]. The most recurring problems are
related to the reliability of the voting machines, both in
terms of accuracy and availability. The consequences of
such problems range from long lines at precincts and
lengthy recounts to lost votes and sudden switches in
election results.

There are several reasons for the poor quality of exist-
ing voting systems. First, HAVA has created an incentive
for counties to rush into using DREs. In some cases,
jurisdictions may have done so without adequate prepa-
ration, and, as a consequence, have experienced failures
during an election. Similarly, vendors may have rushed
their products to market in order to beat competitors,
at the expense of careful testing and quality assurance
programs.

Second, effectively managing the life cycle of a voting
system is a complex task, requiring the careful combi-
nation of people, processes, and technology [12]. For
example, voting systems are developed by vendors and
purchased as commercial-off-the-shelf (COTS) products
by the state and local administrators that are actually
in charge of running an election. These groups often
have limited resources for testing the voting machines,
identifying problems, and having them fixed in a timely
manner.

Third, voting machines are complex software artifacts
that need to account for and conform to a number of
technical and procedural requirements and policies. This
situation is further complicated by the fact that the US

election process can be seen as an assemblage of 51
somewhat distinct election systems (those of the 50 states
and the District of Columbia), each with its own rules
and exceptions. In addition, it is common for states to
further decentralize this process, so that voting details
are carried out at the city or county level.

Finally, the standards that set the functional and per-
formance requirements against which the systems are
developed, tested, and operated have often been found
to be inadequate [12], [18], [19]. Among the reasons
for concern, critics include vague and incomplete secu-
rity guidelines, insufficient documentation requirements,
and inadequate descriptions of the configuration of com-
mercial software.

From the security point of view, a natural question
to ask is whether the weaknesses demonstrated by elec-
tronic voting systems could be leveraged by attackers to
subvert the results of an election, for example causing
incorrect tallying of votes or violating other properties
of the voting process, such as user confidentiality. The
first concerns in this area largely predate the HAVA
reform [20], [21]; however, we focus here on security
evaluations of modern, current electronic voting sys-
tems.

The first analysis of a major electronic voting system
was performed in 2003, when Bev Harris discovered
that the software repository of the Diebold system (in-
cluding source code, precompiled binaries, and other
documents) were stored on a publicly-accessible FIP
server [22]. After downloading the files and testing
the system, in particular the election management com-
ponent, she discovered various ways to change votes,
bypass passwords, and alter audit logs [23].

The same Diebold repository was also analyzed by a
team of researchers from Johns Hopkins and Rice Uni-
versities [2], [24]. Their analysis, which focused on the
source code of the AccuVote-TS voting terminal, found
serious and wide-reaching problems and concluded that
the system was “far below even the most minimal secu-
rity standards applicable in other contexts.” Subsequent
studies taking into account the actual hardware, election
procedures, and environment confirmed the main results
of the Hopkins-Rice study [25], [26].

The first independent security assessment of a com-
plete voting system, including both the hardware and
the software components, is due to Feldman et al. [27].
The Princeton team obtained the system from an undis-
closed “private party,” proved that malicious code could
be easily installed on the machine to undetectably steal
votes and modify records and audit logs, and devel-
oped a virus with the capability of spreading from
one machine to another. They also uncovered several
problems with the physical security of the terminal and,
in particular, found that standard furniture keys were
sufficient to open the door of the machine that protects
the memory card that stores the votes [28].

More recently, as access to electronic voting equip-
ment has increased either through officially sponsored

initiatives or unofficial channels [29], assessments of
their security features have also become more common.
Available studies demonstrate that problems are present
in most systems, independent of the specific system’s
vendor. For example, Gonggrijp and Hengeveld exam-
ined the Nedap ES3B system used in the Netherlands
and reported a number of fundamental weaknesses (in-
cluding compromising electromagnetic emanations) that
make it “unsuitable for use in election” [30]. Proebstel et
al. discovered several exploitable issues in Hart’s eSlate
system [3]. Ryan and Hoke discussed problems with
Diebold’s GEMS software [31]. Yasinsac et al. discovered
several software vulnerabilities in ES&S iVotronic [4].
More recently, some of the other teams involved in the
security assessments of California and Ohio have also
described their experiences and findings [32], [33].

While most of the studies have been directed at DRE
systems, problems are not limited to one category of elec-
tronic voting technology. Optical scanners also contain
security-relevant vulnerabilities [34], [35], [36].

The possibility of voting over the Internet and
Internet-based voting systems have also received great
scrutiny and showed similarly severe security issues [37].
For example, the SERVE system was designed to allow
US overseas voters and military personnel to vote in the
2004 primary and general elections, but the system was
canceled after a study uncovered a number of critical
vulnerabilities [38], [39]. Another relevant example is the
system in use for the election of the Assemblée des Frangais
de I'étranger, which, in turn, nominates twelve members
of the French Senate. The system was assessed by Appel,
who deemed it to be lacking the basic mechanisms
to assure that an election is conducted accurately and
without fraud [40].

Flaws in current voting systems, which were discov-
ered through testing and other analysis techniques, have
stimulated a number of research efforts to mitigate the
problems in deployed voting systems [41]. These efforts
focused on ameliorating security primitives, such as the
storage of votes [42], [43] and auditing [44], and on
formally assessing and making procedures more effec-
tive [45], [46]. In addition, a number of efforts have been
proposed to improve the design of voting machines [47],
[48], to develop new voting technologies [49], or to intro-
duce novel voting protocols, often with particular desir-
able characteristics such as verifiable voting in absence of
trusted components [50] and privacy against adversaries
with unbounded computational resources [51].

This paper differs from the aforementioned studies
in several significant aspects. With respect to earlier
efforts, the reviews in which we participated had a much
broader scope: we had (almost) full access to source
code, documentation, actual voting machines, and proce-
dure descriptions used in real elections. We also had the
opportunity to test complete voting systems rather than
single pieces of equipment. These factors allowed us to
test the security of the system more thoroughly (e.g.,
confirming vulnerabilities detected through source code

analysis by developing actual, working exploits) and
to assess the security implication of combining several
vulnerable components (e.g., showing how a virus could
spread from one component of the voting system to
another).

The systems we tested were used in contexts where
the act of casting a vote and the transmission of ballots
over a network (e.g., the Internet) was prohibited by
law. Therefore, we did not have a chance to explore
problems arising in this situation. However, some of the
components we reviewed could be interconnected by an
internal network, physically separated and disconnected
from external networks. We investigated this scenario
and documented the corresponding threats.

Finally, the contributions of this paper do not consist of
a novel voting technique or system. Instead, this paper
provides a comprehensive review of the methodology,
techniques, and tools we developed and used in our test-
ing experiences, and a summary of the lessons learned
during our studies. The focus and the details we provide
on these aspects of our work also differentiate our paper
from those produced by other teams involved in the
California and Ohio evaluations. We believe that our
methodology is general and can be adapted and applied
even when the settings of the testing are different than
the projects we participated in, and we expect that this
information will be useful to other researchers who want
to test electronic voting machines.

4 VOTING SYSTEMS

Electronic voting systems are complex distributed sys-
tems, whose components range from general-purpose
PCs to optical scanners and touch-screen devices, each
running some combination of commercial off-the-shelf
components, proprietary firmware, or full-fledged oper-
ating systems. In this section, we present a description
of the components that most frequently are part of an
electronic voting system. Then, we describe what the
peculiarities of these systems are and why testing their
security is challenging.

4.1 Components of the system

The components of an electronic voting system are:

e DRE - Direct Recording Electronic voting machine -
is a device to record the voter’s choices. The DRE
is usually a touch-screen device where the voter
casts his/her vote. Figure 1 shows the DRE voting
machines of Sequoia and ES&S.

e VVPAT - Voter-Verified Paper Audit Trail - is a
paper-based record of the choices selected by the
voter. The VVPAT printer is hooked to the DRE
and the paper record is viewable by the voter, but
it is under a transparent cover so that it cannot
be modified other than through the normal voting
process. The VVPAT for the ES&S DRE can be seen
on the left of the touch-screen area in Figure 1.

o EMS - Election Management System - is the system
responsible for the initialization of the components
that collect the votes and also for the final tallying
of the votes. The EMS is usually located at election
central and it is often implemented as software
running on a commodity PC.

o Optical Scanner - is an optical reader that counts
votes cast on paper ballots. There is usually one
scanner at each polling site and one at election
central (e.g., for the counting of absentee ballots?).
Figure 2 shows Sequoia and ES&S optical scanners.

o DID - Data Transport Device - is a storage device
to transfer data between different components of the
systems. These devices are used to transport ballot
information to the DREs and optical scanners at the
polling site and to transport voting results to the
EMS. Figure 3 shows the DTDs used in the ES&S
voting system.

Prior to the election, ballot information is prepared on
the election management system at election central. This
information may be directly entered into the DREs and
the optical scanners, or it may be written onto DTDs that
are sent to the polling places, separate from the DREs
and scanners. Paper ballots for each of the polling places
are also prepared at election central.

On election day, prior to the start of the voting process,
if the DREs and optical scanners were not initialized at
the central location, then they are initialized with the
appropriate ballot information at the polling site, using
the DTDs that were sent to the polling place separate
from the DREs and scanners. After the DREs are initial-
ized (or simply powered up, if they were initialized at
election central), they are tested with sample votes to see
if they record everything accurately. The optical scanners
are tested in a similar way. This is called the pre-election
logic and accuracy testing (pre-LAT) phase. If the DREs
and the scanners pass the pre-election testing, then they
are deemed ready to be used for voting.

When a voter comes to the polling place, he/she
registers at a desk. Then, either the voter is given a token
(e.g., a smart card) to insert into the DRE to start voting,
or the election official carries the token and inserts it
into the DRE on the voter’s behalf. In the case of the
voter carrying the token, he/she removes the token and
returns it to the election official when he/she is finished
voting. If the election official initiates the voting session,
the token is usually removed before the voter starts to
cast his/her ballot. The voter’s selections are displayed
on the DRE screen and are also printed on the VVPAT.

If paper ballots are used, the voter is given a ballot and
a marking device to cast his/her vote. When the voter is
through, the ballot is handed to an official who inserts it
into the optical scanner to be read and recorded. Some
optical scanners will report an undervote (voting for less
than n choices when n are supposed to be picked) or an

1. An absentee ballot is a ballot that is cast without physically going
to a polling place on election day. Absentee ballots are usually sent by
mail to election central.

L ptoch Snsipht

¥ INSERT BALLOT HERE ¥

Fig. 2. The Optical Scanners from Sequoia (left) and ES&S (right).

overvote (voting for more than n choices when n is the
maximum number that can be marked). If this is the case,
the voter is given the opportunity to correct his/her vote.

After the election is closed, the results from each of
the DREs and scanners at a polling place are collected
on a DTD and returned to election central, where they
are read into the election management system to produce
a tally for the entire area.

Note that what we have described is a simplified, ab-
stract version of the voting process that reflects how the
evaluated voting systems are used in US-based elections.
These systems, or some of their components, might be
used in different ways in other countries. Nonetheless,
we believe that this process is representative of how
these voting systems are used in most elections.

4.2 How voting systems differ from other systems

Electronic voting systems differ from other types of sys-
tems in a number of ways. One important difference is
that their results are hidden from the user. For instance,
if one is interacting with an ATM, the user has the cash
disbursed by the machine along with the receipt to verify
that the transaction occurred correctly. With an electronic

voting machine, the most that a voter receives is a receipt
indicating that he/she voted. Of course, the receipt never
records a vote, because if the voter were to receive such
a receipt indicating who was voted for, then votes could
be purchased or coerced.

Furthermore, with electronic voting systems, failures
are not apparent, because the changes in the overall
state of a system as a result of its interaction with the
voter (e.g., the total count of the votes associated with
a certain candidate), are hidden from the voter. That is,
even if the system were not behaving maliciously, the
DRE can make mistakes due to configuration problems,
such as an inaccurate touch-screen calibration (i.e., the
voter touches near the desired icon, but the vote is given
to the candidate or party associated with a neighboring
icon). This kind of problem can have an enormous effect
on the election results. Of course, these errors would be
indicated on the tally screen and on the VVPAT, but ex-
periments have shown that these summary screens and
the VVPAT are seldom carefully reviewed by voters [52],
[53].

In addition to hiding the results of a transaction from
the user, the records are both electronically normalized
and anonymized. This has two consequences. First, if the

Fig. 3. The Data Transport Devices used in the ES&S voting system. The reference coin is a US quarter, whose

diameter is 24.26 millimeters.

records are not properly protected using some form of
strong cryptography (used correctly, of course), they can
be altered without alerting suspicion beyond statistical
figures. Second, electronic records can be forged faster
and more easily than physical ones. In the case of
voting, a forgery would involve reverse-engineering the
results file format and simply writing file(s) as desired,
where previous attempts might have involved acquiring
a printing press and trying to imitate both the voting
form and the nondeterminism of the human hand. The
latter is clearly a much more involved task than the
former.

To prevent voting systems from being compromised,
physical security is of great importance. The systems are
locked in warehouses, which often require two-person
controls to enter. In addition, every component of a
voting system is accompanied by a “chain of custody
receipt” in order to generate an audit trail of who had
access to which components at what time. Unfortunately,
voting systems are often delivered to polling places a
week or more ahead of election day, and in the interim
are often stored in insecure environments, such as a
school gym or an election official’s garage. Such practices
represent an obvious “weak link” in the chain of custody.

In addition to physical security, much of the security
of the voting process is dependent on the poll workers
following explicit procedures. Unfortunately, most of the
personnel that are required to carry out these procedures
have very limited IT training and are not capable of deal-
ing with problems that could arise when using electronic
voting systems. The solution to this problem often is to
have a representative from the voting system vendor on
site (or at least on call) to deal with IT problems that
may arise.

Since voting machines are so critical to our democracy,
there is a strong desire to assure that they perform cor-
rectly. Currently the assurance of these systems involves
a lengthy certification process. This certification process

is a double-edged sword. Because it takes so long for
(re)certification, vendors are often slow to apply patches
to their systems. The result is that vulnerabilities are
not fixed as soon as they should be, and vulnerable
systems are widely deployed. In a testimony before the
U.S. House of Representatives [54], Wagner presented
a number of problems with the certification process: (i)
there is a conflict of interest, because the required certi-
fication process performed by testing authorities is paid
for by the vendors; (ii) there is a lack of transparency,
since the reports are generally not publicly available; (iii)
certification does not include the testing and enforcing
of required standards; and (iv) there is the lack of a clear
decertification path for systems that fail testing.

In addition, the certification standards have their own
set of problems. They lack a clear system and threat
model, they often propose seemingly arbitrary specifi-
cations, they sometimes mandate impossible features,
and they cannot easily keep up with the appearance
of new security threats, as the definition of certification
standards is a time-consuming, lengthy process [55].

4.3 Security testing of voting systems

Security testing is generally an overlooked and under-
appreciated part of the electronic voting machine test-
ing process as a whole. The reason for this deficiency
stems from many factors. First, the majority of software
developers are not security experts, or even security-
aware. This leads to software with “bolted-on” security,
poorly implemented security, or no security whatsoever.
Second, software testing engineers and the organizations
that employ them are concerned with proper execution
in response to use cases and the advertised functional-
ity of a product. Exceptional and hostile environments
are usually not considered in the testing process, even
though there is a substantial number of publications on
security testing [56], [57]; therefore, security holes are
not discovered. Finally, the security of large systems

with many developers is often hard to assess, because
it requires knowledgeable individuals who are able to
understand how one could leverage the complex inter-
actions between the components to bring the system into
an unintended and vulnerable state.

The aforementioned characteristics of voting systems
imply three important consequences that necessitate pro-
per design and security evaluation. First, the presence of
sensitive election information makes the threat of well-
funded and motivated attackers a real concern. Second,
the distributed nature, complex design, and reliance on
proper execution of operational procedures all serve to
create a wide and varied attack surface. Finally, the
public’s relation to voting systems, both in their use
and in their effect on the future direction of society,
makes public perception and confidence of primary im-
portance when testing these systems. All of these factors,
combined with historical implementation issues, set the
testing requirements for electronic voting systems apart
from the testing of other systems.

In order to ensure the public’s confidence in a voting
system, a rigorous, objective, and publicly accessible test
procedure and report must be developed. Reassurance
by the vendor is necessary, but cannot be considered
sufficient in this case. Instead, the system of checks and
balances that is important in any public arena should
also be applied here. It has to be noted that often the
public has been lulled into a false perception of the
security characteristics of electronic voting system by the
vendors of the systems and the administration that used
taxpayers” money to acquire them.

Although the certification process can help validate
the proper functioning of a voting system under ideal
conditions, real-world deployments often rely on oper-
ational procedures for this assurance. These operational
procedures, however, cannot be the only measure guar-
anteeing security. Instead, there should be safeguards
built-in at both the software and physical layers for cases
in which these procedures are not carried out correctly or
in good faith. For these reasons, the relationship between
the operational procedures, their effect on information
flow, and the overall security of the system must be
carefully analyzed.

One of the biggest frustrations to the potential test-
ing of current electronic voting systems is that they
use both proprietary hardware and software. In many
cases, being proprietary makes obtaining source code,
documentation, and build environments very hard. In
addition, the technologies that are used can be very old
and outdated, making the reproduction of a suitable
test environment nearly impossible. For these reasons,
the resources that are available to a potential objective
tester are usually severely constrained, enabling only
black-box testing where white-box or gray-box testing
is appropriate.

In the two voting system evaluations in which we
were involved, we tested specific configurations and
versions of the components of the systems. In the case of

the Sequoia voting system, we tested the WinEDS EMS
(version 3.1.012), the AVC Edge Model I DRE (firmware
version 5.0.24), the AVC Edge Model II DRE (firmware
version 5.0.24), the Optech 400-C/WinETP optical scan-
ner (firmware version 1.12.4), the Optech Insight optical
scanner (APX K2.10, HPX K1.42), the Optech Insight
Plus optical scanner (APX K2.10, HPX K1.42), the Card
Activator (version 5.0.21), the HAAT Model 50 card
activator (version 1.0.69L), and the Memory Pack Reader
(firmware version 2.15). In the case of the ES&S voting
system, we tested the Unity EMS (version 3.0.1.1), the
iVotronic DRE (firmware versions 9.1.6.2 and 9.1.6.4), the
Model 100 optical scanner (firmware 5.2.1.0), and the
Model 650 optical scanner (firmware 2.1.0.0).

5 METHODOLOGY

In this section, we present a two-tiered testing method-
ology that can help security engineers in designing ex-
periments to evaluate the security of an electronic voting
system. Steps 1 and 2 of the methodology deal with an
abstract, high-level view of the voting system. Steps 3
through 6 deal with the low-level actual implementation.
There is also a preparation for testing step, Step O.
The overall approach focuses on finding software bugs
and design errors that lead to vulnerabilities that can
potentially be exploited by an attacker to violate the
integrity, confidentiality, and availability of the voting
process.

Step 0. Information gathering

This step is actually preparation for the testing process.
It consists of collecting all the available information on
the system under test and preparing the environment in
which the testing will be performed. In particular, it is
important to obtain the following resources:

e A copy of each of the components that are part
of the voting system. Even though some previous
analyses of electronic voting systems [2], [22], [24]
were based solely on the source code, the availabil-
ity of the actual hardware greatly increases one’s
confidence in the results and allows the tester to
actually implement and verify the effectiveness of
each attack.

o A copy of both the source code and binaries for
each software component installed on the voting
machines. This is not strictly required in order to
test the voting system, but it can help to reduce
the amount of reverse engineering required and
simplify the vulnerability analysis.

o A copy of all the available documentation (e.g.,
software user manuals, hardware schematics, and
descriptions of the voting procedures) and the re-
sults of past testing experiments (if any) performed
by other teams on the same voting system. Many
of these documents are publicly available on the
Internet.

o Vendor support in terms of the training required to
properly operate each hardware or software com-
ponent. In addition, a step-by-step example of a
complete election process can be very useful to
quickly understand all the involved procedures and
the interaction between the different components.
This information can be extracted from the doc-
umentation or from the analysis of each module.
However, the involvement of the vendor can greatly
simplify this task.

In our experiments (and therefore in the rest of the
paper), we assume that the testers have full access to
all of the aforementioned resources. It is important to
note that even though this access can greatly improve the
quality of the testing, previous studies have shown that
an attacker can successfully find exploitable vulnerabil-
ities with very limited access to the hardware/software
infrastructure.

Step 1. Identification and analysis of the high-level
components and information flow

This step identifies the high-level flow of information
in the election process and any assumptions that are
made. The first thing to do is to identify the different
components used in the election process. These are not
the actual pieces of hardware, but are the abstract com-
ponents, such as an election management system (EMS),
a DRE, or a data transport device. After all of the high-
level components are enumerated, it is necessary to iden-
tify what information, such as a “ballot,” is generated,
transported, or used by each component. For instance,
the EMS generates the ballot, and the DTDs transport
the ballot from the EMS to the DRE or to an optical
scanner.

Once all the details of each component have been col-
lected, the tester can draw a global picture representing
the interaction and the information flow between the
devices involved in the voting process. Before starting
to look for vulnerabilities, it is important to add one last
piece to the puzzle: the voting procedures. Voting pro-
cedures are a set of rules and best practices that regulate
how a real election must be executed. For example, they
describe who is in charge of each operation, who is going
to operate the voting devices, and how the devices will
be operated.

Taking into account the procedures is very important
in designing realistic attack scenarios. However, it is also
very important to remember that a procedure cannot
be the only defense mechanism against an attacker. For
example, if there is a button on the side of an electronic
voting machine to reset the system, assuming that during
the election a poll worker can check that nobody presses
that button is not a solution to the problem.

Next, it is necessary to list the assumptions that are
made about the confidentiality, integrity, and availability
of this information. For instance, it is assumed that
the ballot information loaded on the DTD is identical

to what was generated by the EMS. Furthermore, it is
assumed that the information on the DTD (e.g., ballots
or voting results) is unaltered during transport.

Step 2. Develop misuse cases for violating the as-
sumptions

It is important to devise experiments to test the cases
in which some of the assumptions (procedural and
otherwise) are violated, intentionally or not. This step
constructs misuse cases where if these assumptions are
not true the secrecy, integrity, or availability of the
election could be jeopardized. For each misuse case the
assumption that is violated and the resulting failure are
identified. Note that at this step we do not identify the
actual attack, or the actor that carries out the threat. An
example of a misuse case is violating the assumption that
DTDs cannot be altered during transport without being
detected. This could result in invalid ballot information
or invalid election results.

Step 3. System analysis and identification of the low-
level information flow

The goal of this phase is to model the input/output inter-
face of each hardware and software component. First of
all, it is important to inspect the hardware and list every
input/output channel such as serial ports, memory card
slots, or wireless interfaces. For example, even though a
DRE is usually not equipped with a keyboard, opening
its case can reveal an internal keyboard port that can be
very useful for debugging and testing.

The best way to reconstruct the information flow
between the different components is through a precise
analysis of the source code. However, in order to avoid
problems in the rest of the experiments, it is a good
practice to initially verify that the source code obtained
in step 0 corresponds to the actual software installed on
the various machines. Unfortunately, the use of propri-
etary (or no longer available) build environments can
complicate this operation, sometimes making a precise
verification impossible.

During this phase, the testers must precisely identify
what data is exchanged between the different compo-
nents, what protocol and data format is used in the
communication, and which physical medium carries the
information (e.g., an Ethernet cable, a phone line, or
a compact flash card). This step begins by identifying
the low-level flow(s) that implement each of the high-
level flows in step 1. If there is a high-level flow that
is not matched in the low-level, then it is necessary to
determine whether the high-level flow is erroneous. If
it is not, then the missing low-level flow(s) must be
identified. An example of an erroneous high-level flow
might be where a VVPAT was identified in the high-
level, but none was used in the actual implementation.
In this case, the high-level flow of information from the
DRE to the VVPAT would be erroneous. If there is a low-
level information flow identified in this step that was not

identified in step 1, then the flow could lead to a way to
covertly leak information.

It is also important to understand how each compo-
nent authenticates and validates the data it receives and
how the information is protected from external analysis,
eavesdropping, man-in-the-middle attacks, tampering,
and replay attacks. For example, it may be possible for
an attacker to use the same credentials to vote twice or
to sniff the communication containing the voting results.

If the data is encrypted, it is important to understand
the way in which the encryption key has been shared
between the sender and the receiver. For example, if the
key used to encrypt the data on a DTD is transmitted on
the same medium, the security of the communication can
be easily compromised. That is, an attacker could alter
the information on the DTD and produce a new integrity
checksum by using the key stored on the DTD. Thus, the
alteration would go undetected.

Finally, the analysis of the source code can reveal other
valuable information, such as undocumented features or
information flows, or the presence of debug functional-
ities that can be exploited to subvert the voting system.

Step 4. Identification of threats and attack exposures

At this stage it is important to define a precise threat
model, which is a model of the possible attackers, their
motivations, capabilities, and goals. For instance, an
attacker can be interested in deleting or altering the
results, in preventing other people from voting, or in dis-
covering the identity of previous voters. Categorizing the
attackers is also very important. Given the critical tasks
performed by these devices and the amount of money
involved in a real election, insiders, as well as outsiders
(e.g., regular voters), can be interested in attacking the
system. Poll workers and election officials can be bribed,
or they may have personal interests in affecting the
results of an election. Even malicious vendor employees
must be taken into consideration, especially given their
access to the low-level voting infrastructure.

To identify actual attack scenarios one considers each
of the assumption violations of step 2 that yielded
an undesirable result. For each of these, the low-level
information is analyzed to see if an attack scenario can
be identified. More precisely, the system analysis of step
3 describes how the actual voting system works, the
operational procedures in step 1 describe how humans
are supposed to interact with the system, and the threat
model describes the possible goals and resources of
various attacker categories. Combining these three pieces
of information allows the security engineer to identify
possible attack scenarios. For instance, consider a corrupt
election official whose goal is to change the results re-
ported for his/her precinct. The operational procedures
of step 1 show that the official has access to the DTD
results cartridge. Furthermore, a misuse case from step 2
reveals that being able to alter a DTD in an undetectable
manner allows one to alter the reported results. Finally,

10

the details of step 3 reveal that the key for encrypting
the data on the DTD is stored on the device. With this
information the security tester can develop a scenario
where the corrupt election official alters the DTD in an
undetectable manner to change the results reported for
his/her precinct.

One can visualize the voting process as a chain of trust
and information that links together all the machines and
the people involved in the voting system. At the begin-
ning, the election officials prepare the ballot definition.
The definition is saved into some devices that are then
used to initialize the electronic voting machines. At the
end of the election, the votes stored in the machines
are collected and sent back to the election management
system to be tallied.

This process has a cyclic structure (See Figure 4),
where the input of a step in the process is the output of
the previous step. Enumerating all the attack scenarios
means enumerating all the possible ways in which an
attacker can compromise a component involved in the
process and break the cycle.

Election
Mgmt
System

Election
Official

1 1 N
Ballot Definition "«

1 1 N R
| 1
Election
'|' Official
Res:Jlts " !
| Ly

Election
Official

Printed !

VVPAT ! Election Central

Polling Place

Precinct Optical
VVPAT DRE Mgmt P
\ : Scanner
A Station
' 4 o ren | ’
* Token) Token , / Tozen
T et N
Voter |« W » Voter

Fig. 4. Graphic description of the cyclical information flow
among the components of the voting system.

Step 5. Breaking the cycle: attacking a component of
the voting process

The objective of this phase is twofold. First, the tester
must perform a vulnerability analysis to identify any
software bug or system design error that can lead to a
vulnerability that can be exploited to realize one of the
attack scenarios that has been identified in the previous
step.

When a vulnerability is discovered in one of the
components, it is necessary to develop an attack that
successfully exploits the vulnerability. Compared with
other security testing experiments, this task presents
interesting and novel difficulties. First, due to the intrin-
sic characteristics of the voting environment, it is often
necessary to develop a number of ad hoc tools in order
to interact with the voting devices.

Second, the stealthiness of the attack can be a very
important point. Even though a simple exploit that
crashes a DRE can be an effective denial of service attack,
more advanced attacks that aim at affecting the results
of the election need to go unnoticed. This is particularly
difficult, because most election systems are designed to
identify and audit any error and suspicious condition;
often, they rely on a Voter-Verified Paper Audit Trail,
which can be very difficult to modify.

Examples of tools and techniques that can be used to
circumvent these limitations are presented in Section 6.

Step 6. Closing the cycle: compromising the entire
voting system

Sometimes the usefulness of individual attack scenarios
are not realized until vulnerabilities of multiple com-
ponents are known. For instance, the full advantage of
being able to modify ballot information on a DTD may
not be evident until it is known that there is a buffer
overflow in the DRE routine that reads the ballot header.

In the previous step, the testers develop attacks that
can be used to compromise a single component of the
voting system. In this last phase, the focus shifts from the
single component to the entire voting system. In particu-
lar, it is now important to evaluate how a compromised
component can take advantage of the legitimate informa-
tion flow to take control of other devices, with the goal
of eventually controlling the entire voting infrastructure.

The idea is to use a combination of the attacks de-
veloped in the previous step to inject a virus-like ma-
licious software that is programmed to automatically
spread to as many voting machines as possible?. This
can be achieved by copying the virus onto media devices
(DTDs) that are later inserted into other components
where the malicious data can trigger a local vulnerability.
If the virus can reach and infect election central (where
components for all of the precincts are initialized and
the votes are tallied), the entire voting process can be
compromised.

Summary

As mentioned earlier, we believe that our testing
methodology can be adapted and applied even when
the settings of the testing are different than the projects
reported in this paper. In these cases, it will not be
possible to complete some of the steps we presented
(e.g., testing the interactions of multiple components
of the voting system will not be possible if only one
is available) or it will be necessary to use different
techniques to perform some of the testing (e.g., if the
documentation of a component is not provided, reverse
engineering may have to be used to understand how the
system works).

2. Hereinafter, we refer to the malicious software we have developed
as a virus or malware. We describe the behavior of the malicious
software as “virus-like” because it spreads from machine to machine.

11

6 TooLS AND TECHNIQUES

In this section, we describe some of the techniques and
tools we used to apply our testing methodology. Be-
cause electronic voting systems are implemented using
specialized hardware, custom tools are often needed. In
particular, it is usually necessary to develop three sets of
tools: tools to extract and replace the voting machine’s
firmware, tools to support the development and testing
of exploit payloads, and tools to read and write the
voting machine’s data transport devices.

How these tools are actually implemented depends
on the type of firmware the voting machine utilizes.
Therefore, we first review the different firmware types
and discuss how they influence the testing process.

6.1

The firmware of the voting machines we analyzed can be
classified into three different types, based on the amount
of COTS components they utilize. The first group of vot-
ing system firmware utilizes a COTS operating system
and all voting-specific code is run as processes within
the operating system. The second class of firmware
utilizes a COTS BIOS. In this case, the voting system
firmware includes functionality normally performed by
the operating system, but utilizes the BIOS for most 1/O
operations and boot-time initialization. The third class of
voting system firmware does not rely on any third-party
components. This type of voting system firmware runs
completely stand-alone.

Depending on the class of firmware, the type of anal-
ysis tools needed for the evaluation differs. For systems
utilizing a COTS operating system, the operating system
tools and services can be leveraged to perform the anal-
ysis. For instance, most operating systems include tools
to perform file operations (e.g., a command shell) that
can be leveraged in order to replace the voting-system-
specific code. In addition, many operating systems in-
clude functionality to support the debugging of user-
level processes. This debugging functionality is very
useful when crafting exploits. Finally, an OS provides
process isolation; therefore, if an attack causes the voting
system process to crash, the operating system would
keep running and allow for uninterrupted debugging
support.

Systems that rely on a COTS BIOS but do not run in
an operating system require radically different analysis
methodologies. This class of voting system firmware
does not include all the services normally provided by
an operating system. For instance, none of the systems
we analyzed contained functionality for attaching a de-
bugger to the voting application process or for manip-
ulating files. Another challenge with these systems is
that they have very limited I/O capabilities. A common
debugging technique is to create a debug program trace
by printing to the console as the program execution
progresses. This technique is complicated by the fact that
none of the voting machines has a built-in console that

Types of voting machine firmware

could be printed to. In addition, the voting systems of
this type that we analyzed were designed so that if the
process running the voting system software crashes, then
the whole system halts. This complicated the process of
doing a post-mortem analysis of failed exploits.

Voting systems that are completely stand-alone have
all the challenges of OS-free voting systems, in addition
to some specific challenges that the lack of a BIOS causes.
One of the main tasks of the BIOS is to facilitate the boot
process. The normal boot sequence of a system with a
BIOS begins with the processor jumping to a specific
address within the BIOS where it starts executing. The
BIOS initializes some of the hardware and loads the boot
block from the boot drive. The boot block in turn loads
the operating system from disk. The operating system is
often contained in a regular file on the boot file system.
In a BIOS-free system, however, the boot process works
differently. The processor starts executing at a specific
address after a reset. Since there is no BIOS in the system,
the voting system code must be located where the BIOS
would be in a COTS system. This means that the voting
system code cannot be stored in a file on a file system,
but, instead, has to be stored on a ROM or EPROM
chip. This fact complicates the analysis. In a BIOS-based
system, it is easy to read and replace the voting system
firmware since it is located in a regular file on a flash
card and hardware adapters to access flash cards are
readily available. The BIOS-free systems we analyzed
all required specialized and less available hardware in
order to read and write the EPROM chips. In addition,
in one of the systems we analyzed, the EPROM was
soldered on the board and it could not be removed
without unsoldering it.

6.2 Firmware reader/writer tools

For the voting machines that had firmware stored on
an EPROM chip, we needed a way to read and modify
the contents of the chip. While commercial EPROM
readers are readily available, they did not suit our needs.
EPROM readers require the chip to be extracted from the
circuit and inserted into the reader. The voting machines
we analyzed had the chips soldered onto a circuit board,
and removing them would have been cumbersome and
could have caused damage. Fortunately, the processors
used in the voting machines with ROM chips all had
built-in JTAG [58] support, which could be leveraged to
access the EPROM chips. JTAG is a hardware debugging
interface. Among other things, it allows the tester to
completely bypass the processor logic and control the
logic state of the processor’s pins directly. By changing
the logic state of the processor’s pins in a carefully
controlled pattern, the EPROM can be accessed through
the JTAG port. Unfortunately, we could not find an
affordable JTAG tool that supported the particular pro-
cessor used by the voting device. We ended up extending
an open source JTAG tool designed for ARM processors
(OpenOCD [59]) to work with the voting machine’s
processor.

12

6.3 Exploitation support tools

Developing exploits for a voting machine is also a diffi-
cult and error-prone task. Each attack must be accurately
tested to tune the exploits with the right memory values.
Unfortunately, the adoption of proprietary firmware and
the lack of appropriate emulator platforms forced us to
perform all the tests directly on the real voting machines.
To make this operation feasible, we first had to add
debugging capabilities to the DREs. In addition, once
the exploit is ready, an appropriate payload must be
developed. To simplify this operation, we developed a
framework that allows the attacker to inject malicious
code in the voting machine by automatically patching its
firmware. The details of the debugger and the patching
framework are presented in the following paragraphs.

6.3.1 Debugger

One of the most important tools needed to write a
functioning exploit is a debugger. The debugger allows
the tester to inspect the memory contents of the vot-
ing machine, set breakpoints, and single step through
the sections of code that contain vulnerabilities. Since
none of the DREs we analyzed had built-in support
for debugging, we had to add this functionality. We
chose to implement GNU debugger (GDB) support over
a serial line. This technique allows the tester to attach a
debugging computer to the voting machine using a serial
cable. The debugging computer runs the GDB applica-
tion and provides the tester with full debugging support
of the target voting machine. In order to implement this
functionality, a debugging stub has to be installed on the
voting machine.

We were not able to compile the firmware of any of
the voting machines we tested because we were not
provided with a functional build system. This forced us
to binary-patch in the debugging stub. The debugging
stub we used was based on a stub shipped with GDB.
We modified the stub in order to make it self-contained,
since we could not rely on operating system services
to access the serial port. After compiling the stub, we
copied the binary stub to an unused area of the voting
machine’s ROM. For the stub to work, it needs to be
hooked into the voting machine’s interrupt table. We
located the interrupt table of the voting machine by
disassembling the binary. The interrupt table can easily
be found by looking for the assembly instruction used to
load the interrupt table. After identifying the location of
the interrupt table, we modified the table to point at our
debugging stub. By performing these modifications, the
code running on the voting machine could be debugged.

6.3.2 Firmware patching framework

After identifying a vulnerability and creating a working
exploit, the next step was to modify the firmware and
cause it to behave in a malicious way. Since we were not
able to compile the source code, we could not just modify
the source and compile a malicious firmware version.

Instead, we had to modify the firmware by binary-
patching in the new functionality. Manually performing
the binary patching can be time-consuming and error-
prone. Therefore, we designed a patching framework
that allowed us to write extensions to the firmware in
C and link these extensions to the original firmware.
Two types of linking were needed. First, the extensions
needed to be able to call functions in the original firm-
ware. Second, the extensions needed to be able to hook
themselves into the original firmware so that the orig-
inal firmware would call the extensions at an arbitrary
location. The framework consisted of two jump tables
and a patching script. The two jump tables processed
the two kinds of links and allowed the extension to
call functions in the original firmware normally. The
patching script concatenated the original firmware and
the extensions and created a new binary. In addition,
the patching script overwrote interesting function calls
in the original firmware and diverted the function calls
to the extension.

6.4 DTD manipulation tools

Most voting machines we analyzed utilized some kind
of data transport device or hardware token for access
control, transferring initialization data to the voting ma-
chines, and moving the voting results back to the EMS.

The DTDs stored a sizable amount of data that was
read into the voting machine during the authentication
and initialization processes. Since the voting machine
was reading data from these tokens, they represented an
interesting attack vector. In order to explore this vector,
we developed tools to perform low-level reads and
writes of the data contained in the DTDs, which allowed
us to create tokens that contained illegal or unusual
data. The DTD and M100 filesystem reader/writers are
discussed in the following paragraphs.

6.4.1 DTD reader/writer

We developed a number of tools to extract and parse the
information contained in various DTDs. Our tools were
also able to write blocks of data back to the transport
devices, setting all of the headers and checksum values
appropriately. Sometimes, as in the case of ES&S per-
sonalized electronic ballot (PEB), the data was stored in
encrypted format but the decryption key was also stored
inside the device itself. In this case our reader/writer
tool was able to retrieve the key and to use it to decrypt
the information contained inside the device and encrypt
our modifications.

By leveraging these basic operations, our tools allowed
us to dump the contents of a DTD and to create valid
DTDs containing arbitrary data.

6.4.2 M100 filesystem reader/modifier

Sometimes, being able to read and write the contents
of a DTD was not enough. For example, the ES&S M100
optical ballot scanner allows the firmware to be updated

13

from a PCMCIA card. While reading from and writing
to the card was not too complicated, extracting and
forging the firmware content was problematic. In fact,
the firmware consisted of a filesystem containing a set of
hardware drivers, startup scripts, and the main scanner
application. Unfortunately the filesystem, a proprietary
QNX filesystem specifically made for flash memory, was
created with an old version of the QNX development
tools, which is no longer supported by the QNX operat-
ing system.

Since we could not find any tools or any description of
the filesystem specifications, we had to reverse-engineer
its format. The fact that the content of the filesystem
was compressed in order to save memory further com-
plicated the reverse-engineering process.

We finally created a tool that was able to extract and
decompress all the files contained inside a firmware
image. Even though the tool did not support the gen-
eration of a new filesystem from scratch, it was able
to re-compress a file and put it back in an existing
firmware image. This was enough to allow us to extract
and modify the main optical scanner application.

7 FINDINGS

We performed a security evaluation of the Sequoia vot-
ing system as a part of TTBR project for the state of Cali-
fornia and the ES&S voting system as a part of EVEREST
project for the state of Ohio. Each voting system was
currently certified for use in the corresponding state.
The exact versions of the reviewed systems and their
components can be found in the public reports of the
studies [5], [6].

Our security evaluations of both the Sequoia and ES&S
voting systems resulted in the discovery of a number
of previously-unknown vulnerabilities. Some of the vul-
nerabilities found were specific to a particular system
or a component, and others were common to both
systems. More importantly, vulnerabilities discovered in
both systems often resulted from serious design flaws
and apparent lack of security awareness of system de-
velopers. For example, we found that important security
mechanisms, such as cryptography, were almost never
used correctly (if used at all) and well-known security
practices, such as avoidance of the usage of unsafe string
handling functions, were often ignored. These findings
lead us to conclude that both evaluated voting systems
are poorly designed, fundamentally insecure, and have a
potential to contain more exploitable vulnerabilities than
what was found during the time-bounded studies of the
systems that we participated in.

In general, vulnerabilities that we found during the
studies are new in the context of the evaluated vot-
ing systems, but, nevertheless, they all belong to well-
known, in the system security world, classes of vulnera-
bilities. The fact that similar types of vulnerabilities were
also found in other voting systems evaluated either in
previous studies (described in Section 3) or as a part of

TTBR and EVEREST studies [60], [61] inevitably leads to
the conclusion that all currently used voting systems are
insecure. The fact that the majority of the discovered vul-
nerabilities could be easily avoided if the systems were
carefully designed and implemented from the beginning
shows that voting system vendors are more interested
in releasing profitable rather than reliable and secure
products. Finally, the fact that such systems are certified
and used throughout the country clearly shows that the
voting system certification process is seriously flawed.
Thus, our findings once again confirm the concern that
the current state of voting technology fails to guarantee
fair elections.

In the following sections, we will describe a represen-
tative sample of the previously-unknown vulnerabilities
that we found.

7.1 EMS vulnerabilities

Tests of both vendors’ election management systems
(EMS) revealed numerous vulnerabilities. Perhaps the
most troubling finding was the presence of exploitable
software defects allowing the execution of arbitrary code
of an attacker’s choosing. For instance, buffer overflows
were present throughout the source code for the ES&S
EMS, indicating a pervasive ignorance or dismissal of
basic security awareness and defensive programming
techniques. In one case, we developed a working exploit
for a buffer overflow in ES&S election results processing
code that allows an attacker to gain full control of the
EMS when election, pre-election, or testing results are
processed. To exploit this vulnerability, an attacker needs
to be able to modify a DTD that is used to transfer
election results from a DRE. One way to achieve that
is described in Section 8.2. A successful attack can go
completely undetected.

Another area of significant concern was the general
lack or misuse of cryptographic techniques to authenti-
cate the origin of data processed by the voting system
or to ensure the integrity of critical election data. For
instance, asymmetric cryptography was completely es-
chewed in favor of secret keys, which in many cases
were hard-coded into a component’s software with no
apparent strategy for key revocation in the event of a
compromise. Additionally, although election data was
in some cases protected by a checksum, these were eas-
ily forged and, invariably, no cryptographically-strong
signing mechanism was used. These oversights allow an
attacker, for instance, to forge authentication tokens and
election results, in some cases for entire precincts.

A third area in which vulnerabilities were found is that
of incomplete specification of system requirements and
misconfiguration of system environments. Both vendors
support the option of deploying their EMS on customer-
provided hardware; in this case, however, documenta-
tion relating to proper system configuration and security
hardening is often misleading or incomplete, resulting in
potentially serious vulnerabilities. For instance, the Se-
quoia EMS was configured with the Windows “autorun”

14

feature enabled for removable media, which allows an
attacker to compromise the machine via the simple inser-
tion of a flash drive or CD-ROM. The EMS also allowed
remote users to not only connect to its back-end database
as the database administrator, but also allowed remote
users to execute arbitrary commands using database
extensions that could have been easily disabled. The
ES&S EMS, as another example, was shipped with a
version of the Java Runtime Environment that includes
a known vulnerability in its image processing code.
Clearly, a coherent, pellucidly articulated set of con-
figuration procedures and system requirements would
largely mitigate such vulnerabilities.

Finally, none of the systems had sufficient access con-
trol mechanisms implemented to protect critical election
data from unauthorized access. As a result, anyone (not
necessarily an election official) with physical or remote
access to the EMS, could potentially view or modify
election data 3. In most cases, user-level security was
expected to be implemented by the host operating sys-
tem. Ironically, the Sequoia system documentation states
that the recommended OS choices included Windows
98 and Me, which have no user-level security. In the
ES&S system, some (but not all) EMS components could
optionally be configured to be protected by an authen-
tication and auditing module, which turned out to be
vulnerable to a simple SQL injection attack.

To summarize, we found that the security of the
election management systems, which are used to store
and process the election data for one or more precincts,
mostly relied on the assumption that only a limited
number of trusted officials can have physical access to
them and that a set of predefined procedures for each
EMS is strictly followed by the officials. Clearly, both
assumptions can easily be violated, intentionally or not,
leaving election data virtually unprotected.

7.2 DRE vulnerabilities

In our evaluations, the vendors’ respective DRE products
suffered from classes of vulnerabilities similar to those
found in the election management systems. Both DREs
contained multiple buffer overflows in their handling of
election data, and working exploits were developed for
overflows in the ballot-loading code for each machine.
Generally speaking, each of the vendors’ source code
bases were written without regard to modern security
engineering practices, such as avoiding the usage of
unsafe string handling functions or performing rigorous
input validation checks.

An important characteristic of the vulnerabilities that
we successfully exploited on both systems is that they
could be automatically and silently exploited during nor-
mal election operations and resulted in complete system

3. In general, to protect election-critical data, counties are expected
to follow a set of procedures that limit access to the EMS to authorized
election officials only. However, if these procedures are violated, inten-
tionally or not, the system can be easily accessed by an unauthorized
person.

compromise. For example, we found that it was possible
to take complete control of the ES&S DRE by creating a
specially-crafted DTD and exploiting a buffer overflow
in the poll-opening process. In the Sequoia system, the
DRE’s firmware could be silently overwritten with code
of an attacker’s choosing by constructing a malicious
version of the DTD that was used to transfer an election
definition from the EMS to a DRE. Perhaps even more
troubling than the existence of buffer overflows, we
found that both systems” DREs did not have sufficient
means to detect a firmware replacement or modification.
Clearly, hardware support for trusted software execution
and the use of non-writable memory would be able to
mitigate a large range of similar attacks.

The design of both DREs also exhibited the same
ignorance or misapplication of cryptography as in the
case of the EMS, with similar implications. During our
evaluations, it was trivial for an attacker to forge au-
thentication tokens as well as modify or simply create
election data. For example, it was possible to forge the
voter cards used by Sequoia DREs when a static key used
for their content encryption was recovered from the bi-
nary image of the DRE firmware. More interestingly, on
both systems, critical security tokens, such as an encryp-
tion/decryption key, a password, or an identification
number, were often stored on the DTDs themselves and
were completely trusted by other system components
without performing any cross-checks. For example, in
the ES&S system, an election key, which was used by
all components of the system as a unique identifier, was
stored on a DTD in an encrypted form. However, the
key used to encrypt the election key was also stored on
the same DTD in unencrypted form. On both systems,
the critical lack of cryptographic protection allows a
malicious person to impersonate an election official or
vendor technician, vote multiple times (for example, by
using multiple forged authentication tokens), perform
unauthorized reconfiguration, or introduce exploits into
the system. Some of these attacks, for example, the ones
that change vote counts, can potentially be detected if
data (such as the number of registered voters and the
number of votes collected at a precinct) originating from
different sources is compared. It is our understanding,
however, that even if data discrepancies are detected,
it is not possible to tell which collected votes are the
legitimate ones and which are not. Thus, even if such an
attack is detected, it should be considered an effective
attack that will affect the outcome of an election.

A particularly disquieting finding was the presence,
in both products, of backdoors or expressly-prohibited
features in the source code. In the case of the Sequoia
DRE, its firmware contained a full-fledged interpreter
for a scripting language, which allowed a user to set
the “tamper-proof” protective counter of the machine,
set the machine’s serial number, overwrite arbitrary files
(including election data, the firmware, or audit log)
on the internal compact flash drive, and reboot the

15

machine.* The source code for the ES&S DRE likewise
recognized special “initialization” and “factory” authen-
tication tokens that allow one to, for instance, reset or
bypass system passwords and erase election and audit
data.

Finally, contrary to the claims of the vendors, the
physical seals protecting access to critical components
of the DRE were, in almost all cases, not tamper-proof
or even tamper-evident. In many cases, the seals could
be removed without evidence or bypassed altogether
by simply removing a small number of screws and
disassembling the chassis of the DRE. The lack of phys-
ical security allows an attacker to access sensitive poll
worker controls and I/O ports during an election, or to
directly access the system firmware, election data, and
audit logs.

7.3 Optical scanner vulnerabilities

Evaluations of the various optical scanners offered by
both vendors followed much the same pattern as the
previous voting system components. A patent disregard
for cryptographic authentication and integrity checks
allows attackers to overwrite a system’s firmware with
malicious versions and modify or construct election
data to be processed by an EMS. For example, in our
evaluation, the firmware update procedure for the ES&S
M100 optical scanner did not require a password and the
option to upload a new firmware was given to the user
as soon as a suitable DTD with a correctly formatted
firmware was inserted. Thus, a sufficiently motivated
attacker with knowledge of the M100 hardware and
physical access to the machine could easily install a new
firmware on the optical scanner. Moreover, due to the
poor system design, a new malicious firmware could be
unintentionally installed on the scanner by a distracted
or inattentive poll worker who was given a malicious
DTD. This situation is possible because the procedure for
installing new firmware on the M100 is the same as the
procedure for loading a new election definition, which
is routinely done during each election. Due to the time
constraints and lack of local access, we were not able
to evaluate the Sequoia optical scanner as thoroughly as
we did for ES&S. However, the similarity of problems
found in other systems components allows us to suggest
that similar problems can exist in the Sequoia optical
scanners.

Physical security measures were lacking in both sys-
tems. In particular, the ES&S scanner lock was easily
picked with a paper clip during our tests, while the
“unpickable” lock on the Sequoia scanner was bypassed
by removing a few screws and pulling out the lock cylin-
der from the scanner’s chassis by hand. In both cases,
an attacker was able to access the machine internals to
potentially execute arbitrary code.

4. “Self-modifying, dynamically loaded or interpreted code is prohibited,
except under the security provisions outlined in section 6.4.e” [62, Sec. 4.2.2]

8 ATTACKS

The vulnerabilities that pervade each vendor’s voting
system allow a multitude of serious attacks to be exe-
cuted under several threat models. Taken in isolation,
these vulnerabilities constitute a sobering threat to the
successful execution of a fair election. Clearly, the ability
to run arbitrary code on the election management system
of a county, or to directly modify election data from a
high-speed optical scanner that processes tens of thou-
sands or more votes during a single election, is a cause
for alarm. When these vulnerabilities are considered in
the context of the system as a whole, however, even
more alarming attack scenarios present themselves. To
illustrate this point, in the following sections we discuss
a class of attacks that was successfully demonstrated
on both vendors’ voting systems: a voting system virus.
We also show how the virus could be used to steal an
election.

8.1 Sequoia virus

In the Sequoia voting system deployment, an attacker
first obtains access to a county elections office.” The
attacker surreptitiously drops a maliciously crafted USB
flash drive into the pool of drives used to initialize the
smart card programming device. When the malicious
drive is inserted into the computer hosting the EMS,
Windows autorun automatically executes a Trojan hid-
den on the drive that contains the virus.

The virus silently installs itself and begins monitoring
the host for removable media insertion and removal
events. Any flash drive inserted into the EMS is infected
with a copy of the virus. In addition, results cartridges
are modified to contain an exploit for a buffer overflow
in the DRE’s ballot-loading code as well as a copy of the
virus.

Infected results cartridges are subsequently used to
initialize DREs prior to the election. The exploit silently
executes during ballot loading and installs a malicious
firmware on the DRE. The malicious firmware acts
normally during pre-election logic and accuracy testing
by taking advantage of existing firmware variables that
indicate whether the DRE is being tested.

On election day, the malicious firmware begins to
execute various vote-stealing attacks. Discussion of these
attacks is deferred to Section 8.4.

After the tallying and reporting process has com-
pleted, the virus can remove itself to avoid detection,
or it can remain dormant on the EMS host until the next
election.

8.2 ES&S virus
In the ES&S voting system deployment, an attacker with
access to a DRE loads a malicious firmware containing

5. Note that if the attacker is an insider, such as an elections official
or maintenance worker, they already have access to the election office.

16

the virus into the machine, either by exploiting a vul-
nerability or by directly modifying the on-board flash
memory. When a master DTD is inserted into the DRE
to initialize it for the election, the malicious firmware
installs a copy of the virus on the DTD itself. Subsequent
uses of the DTD to initialize other DREs result in those
machines being infected through a ballot-loading exploit.

During pre-election logic and accuracy tests, the firm-
ware behaves as expected. During the election, however,
the malicious firmware carries out vote-stealing attacks
similar to those described in Section 8.4.

After the election has ended, a master DTD is used to
collect the votes from each DRE. During this operation,
the malicious firmware infects the DTD with a copy
of the virus, if it is not already infected. The DTD is
then transported by an elections official to the county
elections office, where the votes are transferred into the
EMS. During this operation, a vulnerability in the EMS
is exploited such that the virus is installed in the EMS,
allowing for the possibility of further attacks against the
election system.

After the election results are compiled and reported,
the virus can remove itself or it can remain dormant on
the EMS host until the next election. At that time, the
virus will infect the master DTD that is programmed to
initialize the DREs for that jurisdiction, and the cycle will
continue.

8.3 Stealing an election

On election day, malicious software that has been in-
stalled by the virus at various points in the voting
system becomes active. The primary goal of the malware
is to influence the results of the election such that a
designated candidate or set of candidates is reported
as receiving the highest number of votes. Clearly, this
result can be accomplished in a number of ways. At
the DRE or optical scanner, a malicious firmware may
modify a subset of ballots as they are cast such that they
include votes for the preferred candidates. Additionally,
it may surreptitiously insert fake ballots with votes for
the preferred candidates. It may also attempt to discard,
corrupt, or otherwise fail to properly record votes cast for
other candidates. Finally, it may simply report a voting
summary to the election headquarters that, rather than
reflecting the true distribution of votes recorded, reports
a false vote distribution favoring the preferred candi-
dates. A similar approach that deliberately miscounts
collected ballots can be employed by malware at the
central tabulator at election headquarters.®

A secondary, but nonetheless vital, goal of the mal-
ware is to escape detection by any countermeasures in-
tended to expose election fraud. This goal is important in
order to maintain the illusion of legitimacy with respect
to the election, as well as to preserve the anonymity of

6. Note that an attack mounted at an aggregation point for precinct-
level ballots depends upon the unavailability of intermediate results
at each precinct.

the perpetrators. Countermeasures that must be evaded
by the malware may include technical safeguards such
as cryptographic verification of election software’ or
paper audit trails that can be examined by conscientious
voters or election officials. Procedural measures, such as
mandatory recounts in particularly close races, should be
considered. Also, post-election analysis of the reported
results should not reveal significant statistical anomalies
that would constitute evidence of fraud.

The following sections outline, in detail, specific at-
tacks we have identified against the various components
of electronic voting systems that achieve the first goal of
maliciously influencing election results. Additionally, in
many cases the attacks we discuss successfully evade, in
practice, current countermeasures.

8.4 DRE attacks

Attacks that can be performed by a malicious firmware
installed on the DRE can act either upon individual
ballots or on aggregate results to be reported to the
central tabulator. The following scenarios are of the
former type; a general example discussing both how
aggregate results at the DRE can be attacked as well as
large-scale strategy for how individual ballots at the DRE
can be subverted is presented in Section 8.6.

These attacks assume the presence of a physical audit
trail, such as a paper tape, that can be inspected by
the voter in order to verify the correctness of their
ballot.® Therefore, each attack attempts to ensure that
the physical audit trail is consistent with the number
of votes recorded internally by the DRE. Some attacks
may also insert additional votes in both the physical
audit trail and the electronic results. These attacks are
feasible because, in most cases, the election officials
cannot determine which votes have been forged and they
will have to either accept all the votes or discard the
results of the election altogether.

For the following scenarios we assume that the at-
tacker is only interested in changing the votes for one
candidate.

8.4.1 Trusting voter

In this scenario the malicious firmware assumes that the
voter is “inattentive,” in the sense that the voter is not
careful to check the ballot review screen or physical audit
trail for discrepancies from the intended selections. For
this attack the malicious firmware monitors votes cast by
a voter. At the time each selection is made, the intended
choice is displayed on the screen by the DRE. However,
if the voter does not vote for the preferred candidate,
then, once the ballot is complete, the malware changes
the voter’s selection such that the preferred candidate
is selected. This modified ballot is then presented for

7. Of course, no effective cryptographic verification exists in the
electronic voting systems studied.

8. Without such a device, a malicious firmware could modify ballots
at will without risking detection.

17

review by the voter on the DRE screen as well as on the
physical audit trail. If the voter fails to notice that the
ballot summary is incorrect, the malicious ballot is cast,
and the malware continues to execute the attack against
subsequent voters.

Despite the heavily publicized reputation for elec-
tronic voting machine malfunction, several studies have
shown that only a small minority of voters actually no-
tice when the ballot summary, either virtual or physical,
contains evidence of tampering [52], [53]. Therefore, in
practice, this attack would remain undetected with high
likelihood. This scenario has the additional advantage
that no evidence of malfeasance resulting from the at-
tack can be detected by post-election audits, since the
electronic and physical audit trails will match. Also, if
the voter does notice the discrepancy, there is no proof
that he/she did not just make a mistake.

8.4.2 Careful voter

In contrast to the previous scenario, this attack assumes
that the voter is cognizant of the possibility for electronic
voting machine malfunction, and will be careful to check
the ballot summary before casting the ballot. In this
case, a different attack, which has a lower probability
of detection, can be executed.

The malware allows the voting process to continue
normally until the ballot is cast by the voter. If the
voter did not vote for the preferred candidate, then the
malware changes the voter’s selection such that the pre-
ferred candidate is selected. This modified ballot is then
presented for review by the voter on the DRE screen as
well as on the physical audit trail. If the “careful” voter
happens to notice that the displayed ballot summary
is incorrect, the malware allows the voter to edit the
ballot in order to correct the “mistake.” In this case,
the ballot is cast in its intended form. Additionally, the
malware considers itself detected and, therefore, disables
the attack for a specified period of time (or number of
voters). As with the trusting voter scenario, the electronic
and physical audit trails will match.

8.4.3 Fleeing voter

A relatively common occurrence when using electronic
voting systems is that of the “fleeing” voter. Fleeing
voters are voters who leave the polling station before
completing the ballot. Fleeing voters are handled differ-
ently according to the election jurisdiction; regardless, a
malicious firmware can take advantage of this circum-
stance.

In some jurisdictions abandoned ballots are cast by
a poll worker.’ If the fleeing voter has voted for the
preferred candidate, then the malware installed on the
DRE will do nothing. However, if the vote was against
the preferred candidate, then the malware modifies the
ballot as necessary to reflect a vote for the preferred
candidate. In both cases, the malicious firmware allows

9. In California, abandoned ballots are treated in this manner.

the poll worker to cast the ballot. Clearly, both the
electronic results and physical audit trail will match.

In other jurisdictions, abandoned ballots are discarded
by a poll worker.!” In this case, again two possibilities
arise. First, if the ballot does not contain a selection for
the preferred candidate, then the malicious firmware al-
lows the poll worker to discard the ballot, thus suppress-
ing a vote for the undesirable candidate. If, however, the
ballot contains a vote for the desired candidate, then the
malicious firmware will cast the ballot automatically and
the poll worker will not be aware that the voter fled.

8.4.4 Fake fleeing voter

In this attack scenario, the malicious firmware artificially
induces a fleeing voter situation through careful manip-
ulation of the DRE user interface. The malware allows
the voting process to continue normally until the ballot
is cast by the voter. However, instead of actually casting
the ballot, the malware simply displays a message to that
effect. For instance, a screen saying “Thank you for your
vote” could be displayed. The malware then waits for a
short period of time, during which the voter is assumed
to have left the polling station. After the timeout, the
malicious firmware proceeds as in the case of a fleeing
voter described previously.

8.4.5 After the fact vote

This scenario is similar to the fake fleeing voter scenario
except that the ballot is modified and automatically cast
after the voter leaves. The malware allows the voting
process to continue normally until the ballot is cast
by the voter. If the voter voted against the preferred
candidate, then instead of actually casting the ballot, the
malware simply displays a message indicating that the
voting process is over, as in the previous scenario. The
malware then waits for a short period of time, during
which the voter is assumed to have left the polling
station.

After the timeout, the malware modifies the ballot
such that the preferred candidate is selected instead. Ad-
ditionally, the malware modifies the physical audit trail,
canceling the intended ballot containing a vote against
the preferred candidate. Physically, this process typically
consists of printing a message such as “CANCELED” after
the original ballot. A new ballot is then recorded that
indicates a vote in favor of the candidate. Finally, the
malware instructs the printer to scroll the audit trail such
that the modifications made in the previous step are no
longer visible to the voter, should the voter return to the
DRE.

Due to the fact that the modification of the ballot
is never displayed on the screen of the DRE and the
voter has likely left the polling booth when the physical
audit trail is modified, this attack is difficult to detect.
Additionally, the physical audit trail remains consistent
with the electronic results, with only slight abnormalities

10. Ohio is an example of such a jurisdiction.

18

in appearance that could be attributed to legitimate
malfunction.

8.4.6 \Vote suppression

In contrast to previous attacks, this scenario involves
violating the availability of the DRE as opposed to the in-
tegrity of the ballot. The general approach is to simulate
an electronic voting machine malfunction, for instance
by intentionally miscalibrating the touch-screen display
or by displaying a standard error message and refusing
to accept further input. This attack could be mounted
with a low probability when the malicious firmware
detects that a majority of voters are not selecting the
preferred candidate, thereby suppressing undesirable
votes.!!

8.5 Optical scanner attacks

Similarly to a DRE, attacks performed by a malicious
firmware installed on an optical scanner can target either
individual ballots or the aggregate results to be pro-
cessed by the central tabulator. By definition, a physical
audit trail exists for optical scanners, consisting of the
ballots themselves. Furthermore, optical scanners do not
have the ability to modify the ballots directly. Thus, any
ballot modification performed by a malicious firmware
will necessarily contradict the physical audit trail.

8.6 Large-scale attacks

The attacks presented in the preceding sections primar-
ily focus on how individual ballots can be subverted.
While these attacks are designed to evade detection by
countermeasures deployed at that scale, such as voter-
verifiable audit trails, indiscriminate execution of these
attacks would nevertheless be trivially detectable. For
example, consider a close race where two candidates
polled equally well prior to the election.!? If malicious
software was installed on every DRE and optical scanner
deployed in the jurisdiction, and each instance subverted
as many ballots as possible, the perpetrators would risk
causing a massive discrepancy between the expected
outcome (as predicted by pre-election polling) and the
true outcome. Even limiting the scope of the attacks
to a subset of the precincts might not be sufficient to
evade detection, as an increase in votes for the preferred
candidates could still raise suspicion if it could not be
explained by, for instance, pre-election polling trends
or demographics. On the other hand, fixing the attack
rate to a lower value runs the risk of not achieving the
desired outcome. Finally, manually tuning the attack rate
for every DRE and optical scanner in a jurisdiction is
time-consuming and prone to error.

11. Voting machines are often provisioned for each precinct based
upon an expected number of voters. Therefore, the disabling of even
a small number of machines can be effective in denying the ability to
cast a vote to a large number of voters.

12. Incidentally, it is this very scenario where election fraud is most
effective and, therefore, most likely to be performed.

These considerations are also applicable to attacks
that can be executed against either the results gathered
from each DRE and optical scanner. Therefore, it would
be necessary to formulate a large-scale strategy that
achieves the desired goal of forcing the preferred set of
candidates to win, while simultaneously minimizing the
risk of detection due to statistical anomalies. Specifically,
at this scale, the attack is constrained by several condi-
tions.

1) The number of votes for the preferred candidates
must be greater than those of the opponents.

2) The margin between vote tallies for any given race
must be greater than that allowing a recount accord-
ing to law.

3) Vote tallies must be “close” to pre-election polling.

These conditions can naturally be cast as a set of lin-
ear constraints, and a general solution to automatically
determining the parameters to implement a large-scale
strategy can be derived using linear programming. For
example, consider a race where the votes reported in
a county with m precincts should be biased toward a
preferred candidate from a set of n candidates. Let

X:{1’0,07"~71’n—1,m—1}30§i<n;0§j<m

denote the percentage of the votes that each candidate 4
should receive in precinct j, where g ; is the preferred
candidate. Let E [x] denote the expected percentage of
votes each candidate will receive per precinct as indi-
cated by pre-election polling, with a margin of error ¢; ;
associated with each candidate ¢ in precinct j. Finally,
let 6 be the percentage vote differential below which a
recount can take place.

Then, a suitable vote distribution for each precinct can
be found by maximizing the objective function

—
—

m—

fx) =Y

§=0 i=

n—

Li,j
0
subject to the constraints

n—1
iy =1v0<j<m
=0

m—1 m—1
Zﬂﬂo,jZ in,j +oV0o<i<n
Jj=0 Jj=0

Tij > Elwi ;] — €
Tij SElzig]+ €y

This distribution is used by the malicious firmware
installed on each DRE or optical scanner in a precinct
as a bound on the percentage of votes each candidate
should receive in a given precinct. As long as the number
of votes for the preferred candidate and the opposing
candidates remain above and below their respective
thresholds, the malicious firmware refrains from execut-
ing an attack. If, however, a bound for any of the can-
didates does not hold, the malicious firmware enables

19

attacks against subsequent voters to restore the proper
local vote distribution. As long as each local distribution
is satisfied, the preferred candidate is guaranteed to
receive a sufficient number of votes, with an overall vote
distribution that minimizes the likelihood of detection.
Of course, if the pre-election polling data does not
indicate that the preferred candidate is likely to win
(i.e., a plurality of votes is not within the margin of
error), then the constraint system will not be feasible.
In this case, the margin of error ¢ must be increased
until a solution is found. This, of course, results in an
increased deviation from pre-election polling data and,
consequently, a higher likelihood of detection.

8.7 Discussion

In the case of both the Sequoia and ES&S voting sys-
tems, analysis of the information flow of the voting
system along with the capabilities of each individual
attack discovered allowed for the identification of large-
scale threats against the voting systems that would not
have been recognized in a piecewise analysis. Virus-
style attacks clearly pose a greater threat to fair elections
than attacks against single components, since a greater
number of votes can be affected, and they are persistent
between elections.

Additionally, the wide variety and large number of
vulnerabilities discovered resulted in many vectors for
the introduction of such a virus. For instance, in the
case of the Sequoia voting system, the virus could be
introduced by exploiting a remote vulnerability in the
back-end database of the EMS. Similarly, for ES&S, the
virus could be introduced into the system by exploiting
the EMS during the tallying process for the preceding
election.

Finally, we want to stress that these scenarios have
been implemented and tested against real, certified vot-
ing systems that are in use today.!> Far from being
the purview of the mythical {iber-hacker, our findings
indicate that large-scale exploitation of electronic voting
systems is well within the capabilities of “persons having
ordinary skill in the art.”

9 LESSONS LEARNED

As we have shown above, the electronic voting systems
that we reviewed are neither secure nor well-designed.
In this section, we summarize what we found to be the
major pitfalls of both systems.

Poor integration leads to insecurity. One of the prob-
lems with most of the electronic voting systems that are
being used today is that these systems are put together
by integrating election components created by different
companies or groups. As a consequence, often there is
no overall system design and no coherent structure. In

13. A video that demonstrates the execution of these scenarios
against one of the systems we analyzed is available at http://www.cs.
ucsb.edu/~seclab/projects/voting/.

fact, one of the reviewed systems was a mish-mash of
legacy software. Almost every component was using its
own database (often storing duplicate data) and had
its own authentication system, if any. When integrating
election components that were designed to be stand-alone, it
is necessary to take into account the overall system design.

Cryptography is hard to get right. One of the major
areas of concern was the use of cryptography. In both
systems we found that most uses of cryptographic tech-
niques could be classified into three main categories:
naive use, incorrect use, or no use at all. For example,
in one of the analyzed systems, data on a DTD was
protected via encryption using a strong symmetric block
cipher algorithm, but the encryption key was stored in
the clear on the same media. In other cases, when elec-
tion data was protected by a checksum, the checksum
could be changed to match the maliciously modified
data. Even worse, in both systems, no cryptographically-
strong signing mechanisms were used to protect the
integrity of sensitive data. A mindful usage of strong
encryption algorithms with strong, well-protected keys along
with data signing are a must for building secure voting
systems.

Unfounded trust assumptions enable compromise. An-
other major problem with both reviewed systems was a
lack of mechanisms allowing one to check the origin of
data along with a lack of appropriate input validation. In
fact, most of the components that we reviewed assumed
that input data came from a specific system component,
disregarding the fact that in many cases it could easily
be forged. For example, checksums were often taken as
proof of data origin. Also, data that was expected to
come from other components (for example, data on a
DTD that was supposed to be generated by an EMS)
was often unchecked for boundary cases. Many such
cases resulted in exploitable vulnerabilities. It is well-
known in the security community that the lack of input
validation is one of the major premises for the existence
of vulnerabilities. One of the main premises for building
a secure voting system is the absence of any unfounded
assumptions and the careful checking of all inputs.

Certification and standards that are currently used are
not enough for security. Both of the systems analyzed
were certified, and their source code was officially com-
pliant with at least one of the standards in use today.
Nevertheless, both systems were inherently insecure.
The problem is that currently used source code standards
are not security-oriented, and even if they were, a simple
checklist-based verification would not be enough. For
instance, to prevent buffer overflows, a standard could
require that any use of a function writing data to a buffer
should be preceded with a boundary check of input size
against the size of the destination buffer. In this case,
while the standard would enforce the usage of checks
before each case, it would still fail to guarantee that
the checks were correct. In fact, one of the exploitable
buffer overflows that we found was a result of a mistake

20

in a similar check. Also, during the review, we found
that systems are not as compliant with standards as
they claim to be. A more thorough and security-oriented
certification process for evaluating voting systems is needed.

Logic and accuracy testing gives a false sense of
security. One of the selling points of both systems was
the fact that they provide a built-in way of testing their
systems for accuracy, which can be done right before
an election. In practice, from a security perspective we
found the tests to be completely useless, since testing
was done only while in a special testing mode, which
was enabled through a switch in the system'’s firmware.
Clearly, since the system itself is aware of the testing
mode, any malicious code that is implanted into the firm-
ware could easily pass the accuracy tests. Interestingly
enough, one of the vendors seemed to have a strong
belief that their logic and accuracy test is capable of
identifying malicious code. The only way to make logic
and accuracy tests realistic is to, at the very least, have the
firmware totally unaware of any testing mode.

COTS components are difficult to configure in a secure
way. We found that the use of COTS components in
some cases made the voting systems more vulnerable.
The main problem is that COTS components often come
with a lot of functionality and can be hard to configure
in a secure way. For example, the EMS for both systems
was based on the Windows operating system, which is
a very complex system of its own, with a large number
of pre-configured settings. Adequate hardening of such
a system requires a high level of expertise. Nevertheless,
the systems that were given to us came mostly with
default configurations and no specification on how to
configure the system’s security was given in either case.
The “autorun” vulnerability presented in Section 7 is one
example of this problem. When COTS components are used,
vendors should either provide a detailed specification of how
the systems should be configured or they should provide pre-
configured systems.

Voting procedures underestimate the power of po-
tential adversaries. Another common problem that we
found is that the security and integrity of both systems
often depend on poll workers following an explicit set of
procedures. In fact, we found that the physical security
of most components depended more on compliance with
a set of procedures than on strong physical guards. It
was often the case that the seals that were used to protect
critical system components could be easily bypassed.
Interestingly, the vendors seem to fail to realize that
procedures cannot substitute for built-in system security
and can be easily violated, intentionally or not. In fact,
the rebuttal of one of the vendors to a discovered secu-
rity problem was that the problem cannot occur because
it violates the procedures. Procedures should never be relied
upon as the only guarantee of system security; rather, each
component of a system should implement a complete set of
security mechanisms necessary for its protection.

Security training of developers is not sufficient. One

of the most frustrating discoveries that we made is the
apparent lack of adequate security training of the voting
system developers. For example, it was often the case
that code written in C consistently used the infamous
strepy() function without checking the size of the copied
data against the size of the destination buffer, which is
one of the most common causes of buffer overflows.
Even more surprisingly, we found cases where the more
secure strncpy() function was used, but incorrectly; the
size of the input was checked against itself rather than
against the destination buffer. Knowledge of basic secu-
rity concepts, their application, and defensive programming
practices should be prerequisites for the developers of critical
systems, such as an electronic voting system.

Summary. In both electronic voting systems studied, we
found that security was not a part of the design and
security features were often added in an ad hoc way.
Furthermore, the “security through obscurity” principle
was often used as one of the main protection mech-
anisms. While undoubtedly the proprietary nature of
the voting software makes it harder for an attacker
to develop a working exploit for the system, we have
shown that it does not make a system completely secure.
Given sufficient time and determination, an attacker
can successfully reverse-engineer a system, starting with
very little information.

Application of the lessons presented in this section
would significantly improve the security of both sys-
tems. For instance, secure software development prac-
tices, static source code vulnerability analysis, automated
testing frameworks, and regular penetration testing are
all means by which the quality of the various software
components and system design as a whole could be
improved. The proper use of standard cryptographic
primitives for ensuring data integrity and provenance
would render some of the attacks presented difficult
or impossible to execute. Proper attention to system
integration and configuration would greatly decrease the
attack surface of electronic voting systems that incorpo-
rate COTS components.

Unfortunately, one cannot consider adoption of the
recommendations outlined here as a panacea for elec-
tronic voting. The design and implementation of dis-
tributed electronic voting systems that are robust against
both external and insider threats, where each component
from the application layer to the hardware is verifiably
free from vulnerabilities and malicious code, and that
satisfy the seemingly contradictory goals of transparency
and protection against coercion, remains an open prob-
lem. Certainly, adoption of the above recommendations
would improve the security of existing electronic voting
systems. Whether the integrity of the democratic process
should be entrusted to such a system is another question
entirely.

10 CONCLUSIONS

In this paper, we presented our analysis of two real-
world electronic voting systems. These analyses were

21

performed as part of state-wide efforts that were un-
precedented in terms of access to the hardware and
software components of the systems.

As part of these exercises, we devised a testing
methodology, developed new tools that are specifically
tailored to the security analysis of these systems, and
learned a number of lessons, all of which should be of
use to other testers that need to evaluate similar systems.

In both the systems that we analyzed, we found
major security vulnerabilities that could compromise the
confidentiality, integrity, and availability of the voting
process. These vulnerabilities allowed us to develop
virus-like malware that can spread from one component
of the system to another, eventually taking control of all
aspects of vote casting and tallying.

The results of our study suggest that there is a need for
a drastic change in the way in which electronic systems
are designed, developed, and tested. Researchers, prac-
titioners, and policy makers need to define novel testing
approaches that take into account the peculiar informa-
tion flow of these systems, as well as the combination of
computer security mechanisms and physical procedures
necessary to provide a high level of assurance.

However, experience with other critical application
domains has shown that building provably secure sys-
tems is not attainable in practice. Therefore, implement-
ing secure voting processes will require improvements
in hardware design, software development, voting pro-
cedures, and voter education.

ACKNOWLEDGMENTS

We want to thank the Secretaries of State of California
and Ohio, Debra Bowen and Jennifer Brunner, respec-
tively. Without their courageous approach to the security
testing of electronic voting systems these studies would
not have been possible. In addition, we want to thank
all the people that worked side-by-side with us during
the TTBR and EVEREST evaluations, including Matt
Bishop, David Wagner, Patrick McDaniel, Matt Blaze,
Robert P. Abbott, Adam Aviv, Aaron J. Burstein, Kevin
Butler, Joseph A. Calandrino, Pavol Cerny, Sandy Clark,
Arel Cordero, Eric Cronin, Mark Davis, Joseph Edmonds,
William Enck, Sophie Engle, Ariel J. Feldman, Luke Flo-
rer, Nathan S. Good, J. Alex Halderman, Joseph Lorenzo
Hall, Candice Hoke, Harri Hursti, Srinivas Inguva, Chris
Karlof, Dave Kettyle, Steve McLaughlin, Deirdre K. Mul-
ligan, Brian Porter, Elliot Proebstel, Laura Quilter, Eric
Rescorla, Naveen Sastry, Hovav Shacham, Gaurav Shah,
Sujeet Shenoi, Micah Sherr, Jacob Stauffer, Till Stegers,
Patrick Traynor, Dan S. Wallach, Ka-Ping Yee, Harlan Yu,
and William P. Zeller.

REFERENCES

[1] S. Pynchon and K. Garber, “Sarasota’s Vanished Votes: An Inves-
tigation into the Cause of Uncounted Votes in the 2006 Congres-
sional District 13 Race in Sarasota County, Florida,” Florida Fair
Elections Center Report, January 2008.

(2]

(3]

(4]

(5]

(6]

(7]
(8]
(%]
[10]
(11]
(12]
(13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

(28]
[29]

[30]

T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach, “Analysis of
an Electronic Voting System,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2004, pp. 27-40.

E. Proebstel, S. Riddle, F. Hsu, J. Cummins, F. Oakley, T. Stan-
ionis, and M. Bishop, “An Analysis of the Hart Intercivic DAU
eSlate,” in Proceedings of the USENIX/ACCURATE Electronic Voting
Technology Workshop, 2007.

A. Yasinsac, D. Wagner, M. Bishop, T. Baker, B. de Medeiros,
G. Tyson, M. Shamos, and M. Burmester, “Software Review and
Security Analysis of the ES&S iVotronic 8.0.1.2 Voting Machine
Firmware,” Security and Assurance in Information Technology
Laboratory, Florida State University, Tallahassee, FL, Tech. Rep.,
2007.

G. Vigna, R. Kemmerer, D. Balzarotti, G. Banks, M. Cova, V. Fel-
metsger, W. Robertson, and F. Valeur, “Security Evaluation of the
Sequoia Voting System,” Top-To-Bottom Review of the California
Voting Machines, July 2007.

P. McDaniel, M. Blaze, and G. Vigna, “EVEREST: Evaluation and
Validation of Election-Related Equipment, Standards and Test-
ing,” Ohio Secretary of State’s EVEREST Project Report, December
2007.

“Sequoia Voting Systems,” www.sequoiavote.com/, May 2009.
“Election Systems & Software,” www.essvote.com/, May 2009.
D. Jones, “A Brief lllustrated History of Voting,” http://www.cs.
uiowa.edu/~jones/voting/pictures/, 2003.

A. Gumbel, Steal This Vote: Dirty Elections and the Rotten History
of Democracy in America. Nation Books, 2005.

107th Congress, “Help America Vote Act,” Public Law 107-252,
2002.

R. Hite, “All Levels of Government Are Needed to Address
Electronic Voting System Challenges,” GAO, Tech. Rep., 2007.
Election Assistance Commission, “State Governments’ Use of
Help America Vote Act Funds,” EAC, Tech. Rep., 2007.

T. Tibbetts and S. Mullis, “Challenged ballots: You be the
judge,” http://minnesota.publicradio.org/features/2008/11/19_
challenged_ballots, 2008.

Common Cause and VotersUnite!, “A Master List of 70+ Voting
Machine Failures and Miscounts by State.”

Verified Voting Foundation, “Electronic Miscounts and Malfunc-
tions in Recent Elections,” http://verifiedvotingfoundation.org/
downloads/resources/documents/ElectronicsInRecentElections.
pdf.

VotersUnite!, “ES&S in the News — A Partial List of Documented
Failures,” http:/ /www.votersunite.org/info/ES&Sinthenews.
pdf.

M. Gondree, P. Wheeler, and D. DeFigueiredo, “A Critique of
the 2002 FEC VSPT E-Voting Standards,” University of California,
Davis, Tech. Rep., 2005.

R. Mercuri, “Voting System Guidelines Comments,” http://www.
wheresthepaper.org/VVSGComment.pdf, 2005.

P. Neumann, “Security Criteria for Electronic Voting,” in Proceed-
ings of the National Computer Security Conference, 1993.

R. Saltman, “Accuracy, Integrity, and Security in Computerized
Vote-Tallying,” Institute for Computer Sciences and Technology,
National Bureau of Standards, Tech. Rep., 1988.

B. Harris, Black Box Voting: Ballot Tampering in the 21st Century.
Elon House/Plan Nine, 2003.

, “Inside a U.S. Vote Counting Program,” http://www.scoop.
co.nz/stories/HL0307/500065.htm, July 2003.

A. Rubin, Brave New Ballot. Broadway, 2006.

SAIC, “Risk Assessment Report: Diebold AccuVote-TS Voting
System and Processes,” Science Applications International Cor-
poration, Tech. Rep., 2003.

M. Wertheimer, “Trusted Agent Report: Diebold AccuVote-TS
Voting System,” RABA Technologies, LLC, Tech. Rep., 2004.

A. Feldman,]J. Halderman, and E. Felten, “Security Analysis of
the Diebold AccuVote-TS Voting Machine,” in Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop, 2007.
E. Felten, ““Hotel Minibar” Keys Open Diebold Voting Ma-
chines,” http:/ /www.freedom-to-tinker.com/?p=1064.

A. Appel, “How I bought used voting machines on the Internet,”
http:/ /www.cs.princeton.edu/~appel/avc/, February 2007.

R. Gonggrijp and W. Hengeveld, “Studying the
Nedap/Groenendaal ES3B Voting Computer: A Computer
Security Perspective,” in Proceedings of the USENIX/ACCURATE
Electronic Voting Technology Workshop, 2007.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

22

T. Ryan and C. Hoke, “GEMS Tabulation Database Design Issues
in Relation to Voting Systems Certification Standards,” in Pro-
ceedings of the USENIX/ACCURATE Electronic Voting Technology
Workshop, 2007.

A. Aviv, P. Cerny, S. Clark, E. Cronin, G. Shah, M. Sherr,
and M. Blaze, “Security Evaluation of ES&S Voting Ma-
chines and Election Management System,” in Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop, 2008.
K. Butler, W. Enck, H. Hursti, S. McLaughlin, P. Traynor, and
P. McDaniel, “Systemic Issues in the Hart InterCivic and Premier
Voting Systems: Reflections on Project EVEREST,” in Proceedings
of the USENIX/ACCURATE Electronic Voting Technology Workshop,
2008.

H. Hursti, “Critical Security Issues with Diebold Optical Scan
Design,” Black Box Voting Project, Tech. Rep., July 2005.

A. Kiayias, L. Michel, A. Russell, N. Shashidhar, and A. See,
“Tampering with Special Purpose Trusted Computing Devices: A
Case Study in Optical Scan E-Voting,” in Proceedings of the Annual
Computer Security Applications Conference, 2007.

A. Kiayias, L. Michel, A. Russell, N. Shashidhar, A. See, and
A. Shvartsman, “An Authentication and Ballot Layout Attack
against an Optical Scan Voting Terminal,” in Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop, 2007.
A. Rubin, “Security Considerations for Remote Electronic Voting,”
Communications of the ACM, vol. 45, no. 12, pp. 3944, 2002.

D. Jefferson, A. Rubin, B. Simons, and D. Wagner, “A Security
Analysis of the Secure Electronic Registration and Voting Exper-
iment (SERVE),” US Department of Defense, Tech. Rep., 2004.
——, “Analyzing Internet Voting Security,” Communications of the
ACM, vol. 47, no. 10, pp. 59-64, 2004.

A. Appel, “Ceci n’est pas une urne: On the Internet vote for the
Assemblée des Francais de 1’Etranger,” http:/ /www.cs.princeton.
edu/~appel/urne.html.

J. Halderman, E. Rescorla, H. Shacham, and D. Wagner, “You
Go to Elections with the Voting System You Have: Stop-Gap
Mitigations for Deployed Voting Systems,” in Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop, 2008.
J. Bethencourt, D. Boneh, and B. Waters, “Cryptographic Methods
for Storing Ballots on a Voting Machine,” in Proceedings of the
Network and Distributed System Security Symposium, 2007.

D. Molnar, T. Kohno, N. Sastry, and D. Wagner, “Tamper-Evident,
History-Independent, Subliminal-Free Data Structures on PROM
Storage-or-How to Store Ballots on a Voting Machine (Extended
Abstract),” in Proceedings of the IEEE Symposium on Security and
Privacy, 2006, pp. 365-370.

S. Garera and A. Rubin, “An Independent Audit Framework for
Software Dependent Voting Systems,” in Proceedings of the ACM
Conference on Computer and Communications Security, 2007, pp. 256—
265.

J. Hall, “Improving the Security, Transparency and Efficiency of
California’s 1% Manual Tally Procedures,” in Proceedings of the
USENIX/ACCURATE Electronic Voting Technology Workshop, 2008.
K. Weldemariam and A. Villafiorita, “Modeling and Analysis of
Procedural Security in (e)Voting: the Trentino’s Approach and
Experiences,” in Proceedings of the USENIX/ACCURATE Electronic
Voting Technology Workshop, 2008.

N. Sastry and D. Wagner, “Designing Voting Machines for Veri-
fication,” in Proceedings of the USENIX Security Symposium, 2006,
pp- 321-336.

K.-P. Yee, “Building Reliable Voting Machine Software,” Ph.D.
dissertation, University of California, Berkeley, 2007.

D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. Rivest,
P. Ryan, E. Shen, and A. Sherman, “Scantegrity II: End-to-End
Verifiability for Optical Scan Election Systems using Invisible Ink
Confirmation Codes,” in Proceedings of the USENIX/ACCURATE
Electronic Voting Technology Workshop, 2008.

C. Karlof, N. Sastry, and D. Wagner, “Cryptographic Voting
Protocols: A Systems Perspective,” in Proceedings of the USENIX
Security Symposium, 2005, pp. 33-50.

T. Moran and M. Naor, “Split-Ballot Voting: Everlasting Privacy
With Distributed Trust,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2007, pp. 246-255.

S. Everett, “The Usability of Electronic Voting Machines and How
Votes Can Be Changed Without Detection,” Ph.D. dissertation,
Rice University, 2007.

T. Selker and S. Cohen, “An Active Approach to Voting Verifi-
cation,” http://vote.caltech.edu/media/documents/wps/vtp_

[54]

[55]

(56]

(57]

(58]

[59]
[60]
[61]
[62]

wp28.pdf, Caltech/MIT Voting Technology Project, Tech. Rep. 28,
May 2005.

D. Wagner, “Testimony before U.S. House of Representatives
at joint hearing of the Committee on Science and Committee
on House Administration,” http://www.cs.berkeley.edu/~daw/
papers/testimony-house06.pdf, 2006.

E. Barr, M. Bishop, and M. Gondree, “Fixing Federal E-Voting
Standards,” Communications of the ACM, vol. 50, no. 3, pp. 19-24,
March 2007.

C. Wysopal, L. Nelson, D. D. Zovi, and E. Dustin, The Art of Soft-
ware Security Testing: Identifying Software Security Flaw. Symantec
Press, Nov 2006.

G. Hoglund and G. McGraw, Exploiting Software: How to Break
Code. Addison-Wesley, February 2004.

Institute of Electrical and Electronics Engineers, IEEE Std 1149.1-
1990 IEEE Standard Test Access Port and Boundary-Scan Architecture.
IEEE, 1990.

D. Rath, “Open On-Chip Debugger,” http:/ /openocd.berlios.de/
web, 2008.

C. S. 0. S. D. Bowen, “Top-to-Bottom Review,” http://www.sos.
ca.gov/elections/elections_vsrhtm, July 2007.

0. S. 0. S.J. Brunner, “Ohio EVEREST Voting Study,” http://siis.
cse.psu.edu/everest.html, December 2007.

United States Election Assistance Commission, “Voting
System Standards,” http:/ /www.eac.gov/votingsystems/
voluntary-voting-guidelines /2002-voting-system-standards,
2002.

23

Davide Balzarotti is an Assistant Professor at
the Eurecom Institute in France. He received
both his Laurea degree and his Ph.D. in Com-
puter Engineering from Politecnico di Milano,
Italy in 2002 and 2006, respectively. His re-
search interests include most aspects of system
security and in particular the areas of intrusion
detection and prevention, binary and malware
analysis, reverse engineering, and web security.

Greg Banks received his M.S. in Computer
Science from the University of California, Santa
Barbara, in December 2008. His research in-
terests include malware analysis and malicious
web infrastructure. He is currently living and
working in the Bay Area.

Marco Cova is currently a Ph.D. student at the
University of California, Santa Barbara. He holds
a Laurea degree in Electrical and Computer
Engineering from the University of Bologna, Italy.
His research interests include malware analysis,
web security, intrusion detection, and electronic
voting security.

Viktoria Felmetsger is a Ph.D. candidate in the
Department of Computer Science at the Univer-
sity of California, Santa Barbara. Her research
interests include all aspects of vulnerability anal-
ysis with emphasis on web applications.

Richard A. Kemmerer is the Computer Science
Leadership Professor and past Chair of the De-
partment of Computer Science at the University
of California, Santa Barbara. He has been a
Visiting Scientist at the Massachusetts Institute
of Technology, and a Visiting Professor at the
Wang Institute and the Politecnico di Milano.
From 1966 to 1974 he worked as a program-
mer and systems consultant for North American
Rockwell and the Institute of Transportation and
Traffic Engineering at UCLA. His research inter-
ests include formal specification and verification of systems, computer
system security and reliability, programming and specification language
design, and software engineering. He is the author of the book "Formal
Specification and Verification of an Operating System Security Kernel”
and a co-author of "Computers at Risk: Safe Computing in the Infor-
mation Age,” "For the Record: Protecting Electronic Health Information,”
and "Realizing the Potential of C4l: Fundamental Challenges.”

Dr. Kemmerer received the B.S. degree in Mathematics from the
Pennsylvania State University in 1966, and the M.S. and Ph.D. degrees
in Computer Science from the University of California, Los Angeles, in
1976 and 1979, respectively. He has served as a member of the National
Academy of Science’s Committee on Computer Security in the DOE,
the System Security Study Committee, the Committee for Review of the
Oversight Mechanisms for Space Shuttle Flight Software Processes, the
Committee on Maintaining Privacy and Security in Health Care Applica-
tions of the National Information Infrastructure, and the Committee on
the Review of Programs for C4l. He has also served as a member of the
National Computer Security Center’s Formal Verification Working Group
and was a member of the NIST’s Computer and Telecommunications
Security Council. Dr. Kemmerer is also the past Chair of the IEEE
Technical Committee on Security and Privacy and a past member of the
Advisory Board for the ACM'’s Special Interest Group on Security, Audit,
and Control. He is a Fellow of the IEEE Computer Society, a Fellow of
the Association for Computing Machinery, and the 2007 recipient of the
Applied Security Associates Distinguished Practitioner Award. He is a
member of the IFIP Working Group 11.3 on Database Security, and a
member of the International Association for Cryptologic Research. He
is a past Editor-in-Chief of IEEE Transactions on Software Engineering
and has served on the editorial boards of the ACM Computing Surveys
and IEEE Security and Privacy.

William Robertson is a researcher with the
Computer Security Group at the University of
California, Santa Barbara, where he received
his Ph.D. in June 2009. His research interests
include web application security, anomaly detec-
tion, testing and evasion of intrusion detection
systems, static and dynamic analysis, and elec-
tronic voting security.

Fredrik Valeur received his Ph.D. from the
University of California, Santa Barbara. His re-
search interests include web application secu-
rity, penetration testing and electronic voting ma-
chines.

24

Giovanni Vigna is a Professor in the Depart-
ment of Computer Science at the University of
California in Santa Barbara. He received his
M.S. with honors and Ph.D. from Politecnico di
Milano, ltaly, in 1994 and 1998, respectively.
His current research interests include web se-
curity, malware analysis, vulnerability assess-
ment, and intrusion detection. Giovanni Vigna
edited a book on Security and Mobile Agents
and authored one on Intrusion Correlation. He
has been the Program Chair of the International
Symposium on Recent Advances in Intrusion Detection (RAID 2003),
the Network and Distributed System Security Symposium (NDSS 2009),
and he is the co-Chair for the IEEE Symposium on Security and Privacy
(S&P 2010). He is on the editorial board of the ACM Transactions
on Information and System Security (ACM TISSEC) and of the IEEE
Transactions on Dependable and Secure Computing (IEEE TDSC). He
was also on the editorial boards of the Journal of Computer Security
(JSC) and of the IEEE Security & Privacy Magazine.

In addition to his academic research, Giovanni Vigna is also inter-
ested in every aspect of hacking. He participated to various hacking
competitions, and he lead the Shellphish team in several editions of
the DefCon CTF hacking competition, which the Shellphish team won
in 2005. Finally, he is known for organizing and running the largest
inter-university Capture The Flag hacking contest (iCTF), which involves
dozens of institutions and hundreds of students around the world every
year. Giovanni Vigna is a member of IEEE and ACM.

