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M assive multiplayer online games 
(MMOGs) have soared in popularity in 
the past few years, with a rapidly grow-
ing user base and game studios pouring 

tens of millions of dollars into developing their next 
big title. The market leader alone—Blizzard Enter-
tainment’s World of Warcraft (WoW)—surpassed 
11.5 million subscribers in December 2008, raking 
in an estimated US$150 million in subscription fees 
per month. With such amounts of money at stake, 
it’s not surprising that game companies want to keep 
their paying customers satisfied and threats to their 
revenue base at bay. One of these threats is botting, a 
form of cheating1 in which players use a program that 
can play the game with a minimum of (or sometimes 
even zero) human interaction. 

To the best of our knowledge, the only automated 
tool against bot programs is the Warden, an applica-
tion that monitors WoW.2 The Warden runs on a play-
er’s computer while he or she plays WoW and checks 
for suspicious programs such as debuggers or bots. It 
reports back to Blizzard, and any violations result in 
temporary or permanent account bans. However, the 
Warden has several shortcomings: it can only perform 
signature checks for known programs, which means 
it’s always a step behind bot writers, and it runs on the 
client’s computer, which is completely out of Blizzard’s 
control. This ultimately means that its results can’t be 
trusted. Additionally, players have already created 
some simple workarounds, such as starting the game 
in guest mode on an administrator account, which 
prevents the Warden from accessing the processes 
at higher privilege levels. Not surprisingly, privacy 

 issues have also 
emerged.3 

We propose a novel approach that relies solely on a 
server-side analysis of character (or avatar) behavior to 
expose bots and avoid many of the drawbacks found in 
client-side solutions. To this end, we exploit an intrin-
sic bot feature—namely, the fact that it’s controlled 
by a script that automates a specific sequence of con-
stantly repeated actions. We focus specifically on the 
game character’s movement by extracting waypoints 
that describe the traveled path and finding repeated 
patterns in the route taken. (Here, a route is the course 
of movement that a character performs in the game 
world, and a path is a sequence of locations that the 
character visits; a route can follow the same path sev-
eral times over.) We implemented and evaluated our 
approach in WoW.

How Bots Work 
Players gravitate to bots because parts of a game can 
be inherently repetitive or boring. In particular, a 
player might need to kill large numbers of enemies to 
gain experience points and earn gold (a process called 
farming in the gaming community), which is often re-
quired to improve the character and progress further 
in the game. Running a farming bot means that the 
character reaps experience points and gold without 
the player investing any time in the game, as the bot 
can reap those rewards very efficiently 24 hours a day, 
without fatigue or boredom. 

Interestingly, players don’t use bots just to improve 
their own characters. There’s a booming market for 
points, gold, and fully realized characters on the Inter-
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net for those people who don’t want to go through the 
hassle of obtaining them through hours of playtime. 
According to some estimates,4 up to 400,000 people 
in China work as gold farmers for MMOGs, gathering 
gold and other in-game items and building up charac-
ters for the sole purpose of selling them online. Obvi-
ously, bots are even cheaper than human labor, making 
them the ideal tool for manipulating the game. 

Botting’s impact on a game can be substantial. In 
particular, it can lead to significant levels of inflation 
in the game economy because bots can, for example, 
create unusual amounts of gold by perpetually slay-
ing monsters. This large amount of circulating gold 
in turn increases prices for items to the point where 
honest players can’t afford them anymore, affecting 
their motivation to play at all and ultimately the game 
company’s revenue. The Lineage game series suffered 
from this snowball effect.5 

Considering botting’s negative impact, it’s not sur-
prising that online game providers usually forbid its use 
or try to keep it at a minimum in their games. How-
ever, it’s difficult to recognize bots because they typi-
cally obey game rules. When game providers take any 
action to detect bots in their virtual worlds, it’s usually 
through human interaction—essentially, a mechanism 
that lets players report suspicious characters. When a 
player reports a suspicious character, a game modera-

tor approaches the character in-game and tries to start 
a conversation, thus checking to see if a human is at 
the keyboard. However, this method is inefficient and 
doesn’t scale well for worlds with tens or hundreds of 
thousands simultaneously online characters. 

A more appropriate way to automatically detect 
bots is to focus on the server side, not the client side. 
Bots usually move around virtual worlds, killing non-
player mobile entities (mobs). To achieve this, a player 
must specify a certain script that determines which 
actions the character chooses. Depending on the game 
situation, this can include the sequence of spells to cast 
in combat, under which circumstances the character 
heals itself, and whether it picks up loot from enemy 
corpses. The player additionally sets a path that the bot 
should follow and the enemies it should attack. 

To execute a script, a bot must first collect infor-
mation about its surroundings in the virtual world and 
then react to that data by sending commands to the 
game. Humans simply look at the computer screen to 
determine trees, mountains, and mobs, but bots must 
apply different methods to collect this information; 
currently, the most common way is through memory 
reading. Similar to a debugger, the bot program hooks 
into the running game process and reads the list of 
mobs and their locations directly from their represen-
tation inside the game’s memory. 

O nline gaming has only recently started to receive interest 

from the security research community. To date, there isn’t 

much work on the detection of bots in online gaming. 

One recent study1 concentrates on simple bots as they exist in 

online games such as poker. The authors propose using CAPTCHAs 

that automated scripts can’t solve to prevent bots from playing the 

game automatically. However, the proposed approach is strongly 

disruptive and has a heavy impact on the gaming experience for 

players—for example, many users might find it tedious and dif-

ficult to deal with CAPTCHAs and decide to quit playing the game. 

Our technique, in comparison, is intended for more complicated 

games, but it’s completely transparent to the end user and has no 

influence at all on the gaming experience. Moreover, we focus on 

detecting bots, not preventing them from running on clients. 

The most closely related work is by Kuan-Ta Chen and his 

colleagues, who used a traffic-analysis approach to identify 

bots for the game Ragnarök Online,2 but their method’s major 

drawback is that it’s tailored for that specific game. Moreover, the 

authors attempted to distinguish traffic generated by the official 

game client from traffic generated by stand-alone bot programs 

through statistical analysis of packet transfer properties. Unfortu-

nately, this approach no longer works for modern games: most 

of them use ping-independent command queuing on the client 

side (which changes network-level properties). In addition, most 

MMOG bots work by interacting with the official game client 

(for example, through code injection into the game process) and 

don’t send any packets themselves. In contrast, our approach is 

aware of the game’s semantics and leverages character behavior 

to identify bots. Thus, our technique is independent of traffic 

conditions and applicable to a wide range of MMOGs. 

A good starting point for anyone interested in online game 

security is a recent book by Greg Hoglund and Gary McGraw 

that covers a wide section of game security topics, ranging from 

the legal issues over bug exploits and hacking game clients to 

writing bots.3 Although the book provides a good introduction 

into several gaming security areas, it concentrates mostly on the 

attacker’s viewpoint and doesn’t provide concrete solutions on 

how to detect or prevent botting. 
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Although this works well for mobs, it isn’t feasible 
to obtain the necessary terrain information this way 
because, based on map files, the game engine decides 
on the fly if the current step is possible or if an ob-
stacle is large enough to block the character. Hence, 
the bot program would need to re-implement parts of 
the game engine and use a sophisticated route-finding 
algorithm to calculate a sensible movement route in 
advance. To avoid this problem, the player usually 
“teaches” the bot a certain path by running it him- or 
herself, with the bot recording waypoints that it will 
follow later to replicate the path.

Another way of getting information about the 
game’s surroundings that works particularly well in 
WoW is by writing an add-on for the game’s script-
ing engine (which offers a limited API to query game 
information). Although the add-on can gather the 
desired information with this method, it isn’t pos-
sible to control the game through the API. Thus, the 
add-on outputs the information to the user interface 
by color-encoding certain pixels. A desktop automa-
tion scripting environment such as AutoIt (www.au-
toitscript.com/autoit3/) then reads and decodes these 
pixels, decides the necessary actions, and communi-
cates them to the game client.

Our Analysis Mechanism
Contrary to human players, who roam freely in a virtual 
world, bots follow a prescribed or previously recorded 
list of waypoints. This suggests that although a human 
player’s movements drawn on a two- dimensional map 
(a movement graph) will look more or less random, 
such a graph produced by a bot will show that it takes 
certain paths repeatedly. Bots usually follow paths 
more or less exactly, but they sometimes leave them 
to attack a monster or collect loot from a slain enemy. 
These small irregularities increase the difficulty of de-
tecting them through movement analysis. 

From looking at a movement graph, it’s often 
straightforward for humans to recognize repeated 
movement patterns, but this solution doesn’t scale to 
large populations of players. Our approach automati-
cally detects if a bot is in control. To accomplish this, 
it first processes and transforms a character’s move-
ment data before it interprets the results of these steps 
to expose bots. 

Collecting Data and Building a Route
When a player moves his or her character in a virtual 
world, the game client regularly sends packets with 
new coordinates to the server. Hence, the movement 
coordinates are readily available on the server side. We 
log the character’s movement and use this game trace 
as the basis of our detection approach. 

In the first processing step of our approach, we re-
construct the route that the character took in the game 

world simply by connecting the coordinate dots that 
arrive at the server. Then, we process the dots via the 
Douglas-Peucker line simplification algorithm.6 The 
algorithm’s output is a simplified curve that resembles 
the original curve within certain tolerance levels but 
consist of fewer vertices. In this way, we eliminate dot 
clusters that occur when multiple packets arrive in 
quick succession at the same location—for example, 
to update the rotation when the mouse turns a charac-
ter. The simplification helps the waypoint extraction 
algorithm concentrate on areas where the dots accu-
mulate because the character passed that point several 
times. The result is a route represented as an ordered 
sequence of dots as displayed in Figure 1a. 

Extracting Waypoints 
When a bot takes the same path several times, dots 
of different runs accumulate into clusters of high dot 
density. In our next step, we extract these clusters and 
create a waypoint around each one; this waypoint is an 
area of a fixed diameter centered on the cluster’s base. 
We choose the diameter to be as small as possible but 
large enough that, if a bot passes a waypoint location 
on a path multiple times, we count the waypoint’s area 
as passed in every run. 

To do this, we use a custom clustering algorithm 
based on the common k-means algorithm,7 in which 
cluster size is limited to waypoint size. As our proxim-
ity measure, we use the Euclidean distance because it’s 
the most accurate measure for this purpose. By con-
straining cluster growth to waypoint size, we make 
sure that a waypoint always contains all the dots of 
the respective cluster and its area is passed every time 
the character moves through one of the dots. Finally, 
we remove overlapping waypoints by keeping the one 
with the larger number of dots. 

As Figure 1b shows, we end up with a set of way-
points distributed over the entire length of the path 
that the character took—they’re a little sparser in 
the less well-traveled sections of the path and denser 
along the “beaten track” because each run’s dots ac-
cumulate there. 

Abstracting the Route Representation 
and Finding Repetitions
Next, we use the set of waypoints to create an ab-
stracted and simplified route representation. We do 
this by iterating over the initial sequence of dots and, 
for each dot, recording the corresponding waypoint 
that the bot passes along the way. When a dot has no 
waypoint, we simply move on. Because each way-
point is uniquely identified, a sequence of waypoints 
can describe a route, as Figure 1c shows. This descrip-
tion is called a movement sequence. 

To tackle the challenge of finding repetitions in 
the movement sequence, we leverage previous work 
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in the area of bioinformatics. In this field, research-
ers have dedicated much effort to analyzing long 
sequences of DNA or proteins for interesting sub-
sequences. We use an extended suffix array8 to find 
repetitions in the movement (waypoint) sequence. A 
suffix array is a data structure for large texts that does 
some precalculations at creation time to facilitate and 
speed up subsequent search operations. At its heart lies 
an array of all suffixes of the text in alphabetical order. 
For the word “banana,” for example, the sorted array 
consists of the suffixes {“a,” “ana,” “anana,” “banana,” 
“na,” “nana”}. 

We extend the suffix array by also calculating the 
longest common prefix (LCP) table, which contains 
the LCP that a suffix shares with the previous entry in 

the array. In other words, the LCP table shows how 
many characters two subsequent entries have in com-
mon before they differ, starting at the beginning of 
the suffixes. An LCP of five means that the suffixes 
are equal in their first five characters and differ in the 
sixth: because all suffixes are substrings starting at dif-
ferent positions in the original text, the substring of 
length five starting at these positions is a repetition. In 
the example suffix array for the word “banana,” the 
LCP table for the entry “anana” would be three. 

For our waypoint sequence, the LCP table lets us 
quickly look up repeated subsequences—in particular, 
a high LCP means that a long part of the route was 
repeated. In a perfect world, a bot would always pass 
the same waypoints in the same order, making it easy 

(a) (b) (c)

(d) (e) (f)

Figure 1. Movement data processing steps. (a) Route and dots, drawn after dot burst removal; (b) waypoints extracted from dot 

accumulations (the smaller purple rectangles mark the extracted clusters); (c) a simplified path (created by connecting waypoints with 

straight lines); (d) original route removed; (e) simplified path with waypoints removed; and (f) path segments show the number of times 

they were traveled. 



Online Gaming

22 ieee seCurity & PriVaCy

to find the complete bot path from these repetitions, 
but a bot might choose not to run the full path in one 
go or won’t follow the path exactly enough to always 
pass all the waypoints along the way. This is actually 
quite common—“perfect” runs are an exception, not 
the rule. The processing of LCP values helps us handle 
these inaccuracies and create a viable measure for sub-
sequence repetitions. 

Bot-Detection Metrics
The processing steps we’ve just described transform 
the movement data into intermediate results; we use 
them as measures for movement repetition to reliably 
differentiate between humans and bots. To actually 
raise bot alerts, we propose two metrics that interpret 
the intermediate results and decide whether the player 
is a bot: one takes into account how often a character 
travels through the locations it visits on its route, and 
the other looks at the amount and length of repeating 
subsequences in the route. 

Decision based on average path segment passes. 
A path segment is a pair of adjacent waypoints in the 
movement sequence—a straight line from one way-
point until the character reaches the next one. The 
number of times a character passes a path segment 
shows how it has moved on that segment, indepen-
dent of the direction. We calculate the number of 
average path segment passes by dividing the total 
number of path segment passes by the number of dis-
tinct path segments. 

It’s trivial to conclude that, when the character 
keeps moving on the same path, this number rises for 
the segments on that path. Because moving on the 
same path also means that no new waypoints are cre-
ated (after all, a set of waypoints already describes the 
path), the number of distinct path segments remains 
constant, whereas the number of total and average 
path segment passes rises steadily. This is the typical 
case for bots, as seen in Figure 1f. 

Human players, however, create new path seg-
ments continuously because random movement cre-
ates new segments between old waypoints or touches 
yet unexplored areas. Thus, the number of both dis-
tinct and total path segments keeps increasing, which 
leads to a low number of average path segment pass-
es—a number that remains constant over the run of 
the game, usually well under two average passes per 
path segment. 

By harnessing this difference, we can easily distin-
guish between bots and human players. Although the 
bot game traces show steadily rising numbers as the 
game commences, the number for the human game 
traces settles down at a constant low level. For our 
approach, we chose average path segment passes over 
average waypoint passes because we found the former 

to be a more robust indicator. Although both numbers 
describe the same principle and lead to similar graphs, 
path segment passes are significantly less likely to be 
repeated accidently. To pass a waypoint a second time, 
the character must visit the same location a second 
time. To pass a path segment for the second time, the 
character must be at the same location and move to 
the same waypoint next. 

Decision based on repetitions in the waypoint se-
quence. Bots always take the same paths, and al-
though they might not move through the exact same 
coordinates, their route still contains many and long 
repeating subsequences when compared to human 
routes. The LCP values from the waypoint sequence 
suffix array exactly capture this property. We calcu-
late the average LCP value to ensure that the route 
must contain not only long but also many repetitions 
to display clearly suspicious numbers. To calculate the 
average LCP value, we sum up the LCP values of all 
entries in the suffix array and divide this by the num-
ber of entries. An average LCP of five means that for 
every waypoint in the waypoint sequence, the sub-
sequence of the next five waypoints is repeated some-
where else. Humans typically never get close to the 
LCP values that bots reach because it’s difficult to 
consistently keep passing the same waypoints in the 
same sequence. The average LCP for humans settles 
on a low level, whereas bot LCPs rise as they visit the 
same path over and over again. This provides a good 
discriminator between humans and bots.

Implementation and Evaluation 
To evaluate our approach, we chose WoW, by far the 
most popular MMOG today. We started by setting 
up a WoW server and collecting game traces for two 
different bots and 10 different human players. For the 
server, we modified the ArcEmu open source WoW 
server emulator (http://arcemu.org) and logged all in-
coming and outgoing traffic and additional informa-
tion about the game state in human-readable format 
to a text file. 

Obtaining Traces 
We prepared template game characters at level 12 for 
four character classes (warrior, paladin, mage, and war-
lock). To obtain human test data, we instigated a LAN 
party for an evening (four hours) and had seven people 
play the game on it, with three more joining over the 
Internet. The probands ranged from regular WoW 
players to beginners who had never played the game 
before. During the test gaming session, we told the 
players to concentrate on farming so that their gaming 
style was more likely to resemble that of bots. 

To create bot game traces, we ran both the popular, 
subscription-based Glider bot (www.mmoglider.com) 
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and the free ZoloFighter bot (www.zolohouse.com/
wow/wowFighter), with the same template characters 
as the human players. We created two game traces per 
bot, using different bot paths each time. Blizzard re-
cently sued the company that developed Glider, which 
clearly shows how seriously game providers are taking 
the botting threat (see http://forums.worldofwarcraft.
com/thread.html?topicId=14910002728&sid=1).

The WOWalyzer 
Next, we fed our traces into the WOWalyzer, a Java 
program we developed to visualize and analyze game 
traces based on the methods described earlier. As ex-
pected, the human movements looked random, with 
very few waypoints or path segments passed more than 
once; the bots, however, quickly showed repeating 
movement patterns. Depending on the length of the 
bot path and the number of enemies along the way, 
it took between 10 and 45 minutes until the beaten 
track was clearly visible from the movement graph. 

Detection based on average path segment  passes. 
Looking at the number of average path segment 
passes, the bot samples exhibited steadily increasing 
numbers, as Figure 2 shows, with the slope depend-
ing on the bot path’s length. The noticeable dip of the 
ZoloFighter sample around time 1,800 owes its shape 
to the fact that a human player took over at roughly 
packet 1,200. The goal was to purposely disrupt the 
bot path and evaluate the influence on our detection 
mechanism. Later, at packet 1,800, we taught the bot 
a new path, which let the number of average line seg-
ment passes rise again. In sharp contrast, the human 
samples show steadily low numbers, settling down 
below two. 

Detection based on repetitions in the waypoint 
 sequence. To measure repeated subsequences in the 
waypoint sequences, we calculated the average LCP of 
the suffix array created from the waypoint sequence. 
As Figure 3 shows, the bot samples show significantly 
higher values than the human samples, because they 
contain a lot more as well as longer repeated subse-
quences. According to the graph, the human players 
didn’t move in repeated patterns, which kept the aver-
age LCP on a stable low level below two, sometimes 
even below one. 

Our Approach’s Accuracy 
The test results show that our technique can reliably 
distinguish between bots and humans. In general, we 
see that after a short time, the numbers for bots and hu-
mans start to diverge, as the bots begin repeating their 
movement pattern on their second run. The detection 
metrics trigger a bot alert whenever the number of av-
erage path segment passes or the average LCP reaches 
a certain threshold. In our implementation, we set the 
threshold for both metrics to five, which detects all 
bots within 12 to 60 minutes, while ensuring that no 
humans are falsely classified as bots. Once these values 
are reached, the trend continues, and the values never 
go back to normal as long as a bot is in control. 

Our testing shows that it takes WOWalyzer less 
than two seconds to process four hours of gaming 
time on a single-core, 1.6-GHz Pentium-M. How-
ever, we propose using a sliding window of two hours 
to make the approach scale well; the time consump-
tion of some processing steps rises at a quadratic rate. 
A shorter observation window also improves the ap-
proach’s results for scenarios in which a human player 
plays for a while before switching over to a bot in 
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an attempt to “hide” bot movements behind human 
activity. Once the human player’s data slide out of the 
observation window, their diluting effect on the aver-
age numbers our approach calculates ceases. 

Evading Detection 
Our system is the ideal server-side bot-detection 
mechanism because it works completely transpar-
ently to the player, making it difficult for someone to 
discover what exactly triggered an account ban. This 
transparency also has the advantage of not impacting 
the gaming experience for honest players in any way. 
However, system discovery would ultimately lead 
to attempted countermeasures. Although our pre-
liminary tests show that our system can distinguish 
between bots and humans, a bot could still avoid de-
tection if it were tailored specifically to our approach’s 
analysis mechanism. 

One evasion vector for bots would be to use very 
long paths, which makes the number of repetitions 
rise more slowly. However, the player must cre-
ate those long paths, which means that the amount 
of time that a person saves by using a bot decreases 
drastically. Simply using paths shared on the Internet 
increases the risk that those paths are also known to 
the game provider’s bot-detection system. 

Another way for bots to evade detection would 
be to move the character more randomly than it does 
already. However, the crucial point remains that all 
current bots for WoW use a navigation system that re-
lies on waypoints, which inherently makes them sus-
ceptible to our and related approaches. Even though 
randomizing the movement along a path would im-
pact the LCP values, the number of average line passes 

would hardly change. More general random move-
ment would make the character susceptible to doing 
something stupid, thereby arousing suspicion from 
other human players. 

O ur tests with WoW prove that our approach ef-
fectively distinguishes between bots and humans 

and is computationally fast enough to monitor large 
numbers of players concurrently. Hence, we believe 
that our technique is an improvement over the sparse 
countermeasures currently in place in MMOGs. 

To address the limitations we just mentioned and 
raise the bar for bot writers who aim to avoid detec-
tion, we intend to extend our system with statistical 
heuristics. Furthermore, we plan to test our approach 
on other MMOGs, such as Lineage and RuneScape. 
As long as bots don’t replace their waypoint-oriented 
navigation with a different paradigm, we predict we 
can stay competitive in this arms race between bot 
programmers and game providers by continuously ex-
tending our method. 
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