
Online Gaming

18 COPublished by the ieee COmPuter and reliability sOCieties ■ 1540-7993/09/$25.00 © 2009 ieee ■ may/June 2009

M assive multiplayer online games
(MMOGs) have soared in popularity in
the past few years, with a rapidly grow-
ing user base and game studios pouring

tens of millions of dollars into developing their next
big title. The market leader alone—Blizzard Enter-
tainment’s World of Warcraft (WoW)—surpassed
11.5 million subscribers in December 2008, raking
in an estimated US$150 million in subscription fees
per month. With such amounts of money at stake,
it’s not surprising that game companies want to keep
their paying customers satisfied and threats to their
revenue base at bay. One of these threats is botting, a
form of cheating1 in which players use a program that
can play the game with a minimum of (or sometimes
even zero) human interaction.

To the best of our knowledge, the only automated
tool against bot programs is the Warden, an applica-
tion that monitors WoW.2 The Warden runs on a play-
er’s computer while he or she plays WoW and checks
for suspicious programs such as debuggers or bots. It
reports back to Blizzard, and any violations result in
temporary or permanent account bans. However, the
Warden has several shortcomings: it can only perform
signature checks for known programs, which means
it’s always a step behind bot writers, and it runs on the
client’s computer, which is completely out of Blizzard’s
control. This ultimately means that its results can’t be
trusted. Additionally, players have already created
some simple workarounds, such as starting the game
in guest mode on an administrator account, which
prevents the Warden from accessing the processes
at higher privilege levels. Not surprisingly, privacy

 issues have also
emerged.3

We propose a novel approach that relies solely on a
server-side analysis of character (or avatar) behavior to
expose bots and avoid many of the drawbacks found in
client-side solutions. To this end, we exploit an intrin-
sic bot feature—namely, the fact that it’s controlled
by a script that automates a specific sequence of con-
stantly repeated actions. We focus specifically on the
game character’s movement by extracting waypoints
that describe the traveled path and finding repeated
patterns in the route taken. (Here, a route is the course
of movement that a character performs in the game
world, and a path is a sequence of locations that the
character visits; a route can follow the same path sev-
eral times over.) We implemented and evaluated our
approach in WoW.

How Bots Work
Players gravitate to bots because parts of a game can
be inherently repetitive or boring. In particular, a
player might need to kill large numbers of enemies to
gain experience points and earn gold (a process called
farming in the gaming community), which is often re-
quired to improve the character and progress further
in the game. Running a farming bot means that the
character reaps experience points and gold without
the player investing any time in the game, as the bot
can reap those rewards very efficiently 24 hours a day,
without fatigue or boredom.

Interestingly, players don’t use bots just to improve
their own characters. There’s a booming market for
points, gold, and fully realized characters on the Inter-

One of the greatest threats that massive multiplayer

online games face today is a form of cheating called

botting. The authors propose an automated approach

that detects bots on the server side based on character

activity and is completely transparent to end users.

Stefan
Mitterhofer
and ChriStian
Platzer
Vienna
University
of Technology

ChriStoPher
Kruegel

University of
California,
Santa Barbara

engin Kirda

Eurecom,
Sophia
Antipolis,
France

server-side bot detection
in massive multiplayer
Online Games

Online Gaming

 www.computer.org/security 19

net for those people who don’t want to go through the
hassle of obtaining them through hours of playtime.
According to some estimates,4 up to 400,000 people
in China work as gold farmers for MMOGs, gathering
gold and other in-game items and building up charac-
ters for the sole purpose of selling them online. Obvi-
ously, bots are even cheaper than human labor, making
them the ideal tool for manipulating the game.

Botting’s impact on a game can be substantial. In
particular, it can lead to significant levels of inflation
in the game economy because bots can, for example,
create unusual amounts of gold by perpetually slay-
ing monsters. This large amount of circulating gold
in turn increases prices for items to the point where
honest players can’t afford them anymore, affecting
their motivation to play at all and ultimately the game
company’s revenue. The Lineage game series suffered
from this snowball effect.5

Considering botting’s negative impact, it’s not sur-
prising that online game providers usually forbid its use
or try to keep it at a minimum in their games. How-
ever, it’s difficult to recognize bots because they typi-
cally obey game rules. When game providers take any
action to detect bots in their virtual worlds, it’s usually
through human interaction—essentially, a mechanism
that lets players report suspicious characters. When a
player reports a suspicious character, a game modera-

tor approaches the character in-game and tries to start
a conversation, thus checking to see if a human is at
the keyboard. However, this method is inefficient and
doesn’t scale well for worlds with tens or hundreds of
thousands simultaneously online characters.

A more appropriate way to automatically detect
bots is to focus on the server side, not the client side.
Bots usually move around virtual worlds, killing non-
player mobile entities (mobs). To achieve this, a player
must specify a certain script that determines which
actions the character chooses. Depending on the game
situation, this can include the sequence of spells to cast
in combat, under which circumstances the character
heals itself, and whether it picks up loot from enemy
corpses. The player additionally sets a path that the bot
should follow and the enemies it should attack.

To execute a script, a bot must first collect infor-
mation about its surroundings in the virtual world and
then react to that data by sending commands to the
game. Humans simply look at the computer screen to
determine trees, mountains, and mobs, but bots must
apply different methods to collect this information;
currently, the most common way is through memory
reading. Similar to a debugger, the bot program hooks
into the running game process and reads the list of
mobs and their locations directly from their represen-
tation inside the game’s memory.

O nline gaming has only recently started to receive interest

from the security research community. To date, there isn’t

much work on the detection of bots in online gaming.

One recent study1 concentrates on simple bots as they exist in

online games such as poker. The authors propose using CAPTCHAs

that automated scripts can’t solve to prevent bots from playing the

game automatically. However, the proposed approach is strongly

disruptive and has a heavy impact on the gaming experience for

players—for example, many users might find it tedious and dif-

ficult to deal with CAPTCHAs and decide to quit playing the game.

Our technique, in comparison, is intended for more complicated

games, but it’s completely transparent to the end user and has no

influence at all on the gaming experience. Moreover, we focus on

detecting bots, not preventing them from running on clients.

The most closely related work is by Kuan-Ta Chen and his

colleagues, who used a traffic-analysis approach to identify

bots for the game Ragnarök Online,2 but their method’s major

drawback is that it’s tailored for that specific game. Moreover, the

authors attempted to distinguish traffic generated by the official

game client from traffic generated by stand-alone bot programs

through statistical analysis of packet transfer properties. Unfortu-

nately, this approach no longer works for modern games: most

of them use ping-independent command queuing on the client

side (which changes network-level properties). In addition, most

MMOG bots work by interacting with the official game client

(for example, through code injection into the game process) and

don’t send any packets themselves. In contrast, our approach is

aware of the game’s semantics and leverages character behavior

to identify bots. Thus, our technique is independent of traffic

conditions and applicable to a wide range of MMOGs.

A good starting point for anyone interested in online game

security is a recent book by Greg Hoglund and Gary McGraw

that covers a wide section of game security topics, ranging from

the legal issues over bug exploits and hacking game clients to

writing bots.3 Although the book provides a good introduction

into several gaming security areas, it concentrates mostly on the

attacker’s viewpoint and doesn’t provide concrete solutions on

how to detect or prevent botting.

References

R.V. Yampolskiy and V. Govindaraju, “Embedded Noninteractive Con-1.

tinuous Bot Detection,” Computers in Entertainment, vol. 5, no. 4, 2007,

pp. 1–11.

K.-T. Chen et al., “Identifying MMORPG Bots: A Traffic Analysis Ap-2.

proach,” Proc. 2006 ACM SIGCHI Int’l Conf. Advances in Computer Enter-

tainment Tech., ACM Press, 2006, article no. 4.

G. Hoglund and G. McGraw, 3. Exploiting Online Games: Cheating Mas-

sively Distributed Systems, Addison-Wesley Professional, 2007.

Related Work in Game Bot Detection

Online Gaming

20 ieee seCurity & PriVaCy

Although this works well for mobs, it isn’t feasible
to obtain the necessary terrain information this way
because, based on map files, the game engine decides
on the fly if the current step is possible or if an ob-
stacle is large enough to block the character. Hence,
the bot program would need to re-implement parts of
the game engine and use a sophisticated route-finding
algorithm to calculate a sensible movement route in
advance. To avoid this problem, the player usually
“teaches” the bot a certain path by running it him- or
herself, with the bot recording waypoints that it will
follow later to replicate the path.

Another way of getting information about the
game’s surroundings that works particularly well in
WoW is by writing an add-on for the game’s script-
ing engine (which offers a limited API to query game
information). Although the add-on can gather the
desired information with this method, it isn’t pos-
sible to control the game through the API. Thus, the
add-on outputs the information to the user interface
by color-encoding certain pixels. A desktop automa-
tion scripting environment such as AutoIt (www.au-
toitscript.com/autoit3/) then reads and decodes these
pixels, decides the necessary actions, and communi-
cates them to the game client.

Our Analysis Mechanism
Contrary to human players, who roam freely in a virtual
world, bots follow a prescribed or previously recorded
list of waypoints. This suggests that although a human
player’s movements drawn on a two- dimensional map
(a movement graph) will look more or less random,
such a graph produced by a bot will show that it takes
certain paths repeatedly. Bots usually follow paths
more or less exactly, but they sometimes leave them
to attack a monster or collect loot from a slain enemy.
These small irregularities increase the difficulty of de-
tecting them through movement analysis.

From looking at a movement graph, it’s often
straightforward for humans to recognize repeated
movement patterns, but this solution doesn’t scale to
large populations of players. Our approach automati-
cally detects if a bot is in control. To accomplish this,
it first processes and transforms a character’s move-
ment data before it interprets the results of these steps
to expose bots.

Collecting Data and Building a Route
When a player moves his or her character in a virtual
world, the game client regularly sends packets with
new coordinates to the server. Hence, the movement
coordinates are readily available on the server side. We
log the character’s movement and use this game trace
as the basis of our detection approach.

In the first processing step of our approach, we re-
construct the route that the character took in the game

world simply by connecting the coordinate dots that
arrive at the server. Then, we process the dots via the
Douglas-Peucker line simplification algorithm.6 The
algorithm’s output is a simplified curve that resembles
the original curve within certain tolerance levels but
consist of fewer vertices. In this way, we eliminate dot
clusters that occur when multiple packets arrive in
quick succession at the same location—for example,
to update the rotation when the mouse turns a charac-
ter. The simplification helps the waypoint extraction
algorithm concentrate on areas where the dots accu-
mulate because the character passed that point several
times. The result is a route represented as an ordered
sequence of dots as displayed in Figure 1a.

Extracting Waypoints
When a bot takes the same path several times, dots
of different runs accumulate into clusters of high dot
density. In our next step, we extract these clusters and
create a waypoint around each one; this waypoint is an
area of a fixed diameter centered on the cluster’s base.
We choose the diameter to be as small as possible but
large enough that, if a bot passes a waypoint location
on a path multiple times, we count the waypoint’s area
as passed in every run.

To do this, we use a custom clustering algorithm
based on the common k-means algorithm,7 in which
cluster size is limited to waypoint size. As our proxim-
ity measure, we use the Euclidean distance because it’s
the most accurate measure for this purpose. By con-
straining cluster growth to waypoint size, we make
sure that a waypoint always contains all the dots of
the respective cluster and its area is passed every time
the character moves through one of the dots. Finally,
we remove overlapping waypoints by keeping the one
with the larger number of dots.

As Figure 1b shows, we end up with a set of way-
points distributed over the entire length of the path
that the character took—they’re a little sparser in
the less well-traveled sections of the path and denser
along the “beaten track” because each run’s dots ac-
cumulate there.

Abstracting the Route Representation
and Finding Repetitions
Next, we use the set of waypoints to create an ab-
stracted and simplified route representation. We do
this by iterating over the initial sequence of dots and,
for each dot, recording the corresponding waypoint
that the bot passes along the way. When a dot has no
waypoint, we simply move on. Because each way-
point is uniquely identified, a sequence of waypoints
can describe a route, as Figure 1c shows. This descrip-
tion is called a movement sequence.

To tackle the challenge of finding repetitions in
the movement sequence, we leverage previous work

Online Gaming

 www.computer.org/security 21

in the area of bioinformatics. In this field, research-
ers have dedicated much effort to analyzing long
sequences of DNA or proteins for interesting sub-
sequences. We use an extended suffix array8 to find
repetitions in the movement (waypoint) sequence. A
suffix array is a data structure for large texts that does
some precalculations at creation time to facilitate and
speed up subsequent search operations. At its heart lies
an array of all suffixes of the text in alphabetical order.
For the word “banana,” for example, the sorted array
consists of the suffixes {“a,” “ana,” “anana,” “banana,”
“na,” “nana”}.

We extend the suffix array by also calculating the
longest common prefix (LCP) table, which contains
the LCP that a suffix shares with the previous entry in

the array. In other words, the LCP table shows how
many characters two subsequent entries have in com-
mon before they differ, starting at the beginning of
the suffixes. An LCP of five means that the suffixes
are equal in their first five characters and differ in the
sixth: because all suffixes are substrings starting at dif-
ferent positions in the original text, the substring of
length five starting at these positions is a repetition. In
the example suffix array for the word “banana,” the
LCP table for the entry “anana” would be three.

For our waypoint sequence, the LCP table lets us
quickly look up repeated subsequences—in particular,
a high LCP means that a long part of the route was
repeated. In a perfect world, a bot would always pass
the same waypoints in the same order, making it easy

(a) (b) (c)

(d) (e) (f)

Figure 1. Movement data processing steps. (a) Route and dots, drawn after dot burst removal; (b) waypoints extracted from dot

accumulations (the smaller purple rectangles mark the extracted clusters); (c) a simplified path (created by connecting waypoints with

straight lines); (d) original route removed; (e) simplified path with waypoints removed; and (f) path segments show the number of times

they were traveled.

Online Gaming

22 ieee seCurity & PriVaCy

to find the complete bot path from these repetitions,
but a bot might choose not to run the full path in one
go or won’t follow the path exactly enough to always
pass all the waypoints along the way. This is actually
quite common—“perfect” runs are an exception, not
the rule. The processing of LCP values helps us handle
these inaccuracies and create a viable measure for sub-
sequence repetitions.

Bot-Detection Metrics
The processing steps we’ve just described transform
the movement data into intermediate results; we use
them as measures for movement repetition to reliably
differentiate between humans and bots. To actually
raise bot alerts, we propose two metrics that interpret
the intermediate results and decide whether the player
is a bot: one takes into account how often a character
travels through the locations it visits on its route, and
the other looks at the amount and length of repeating
subsequences in the route.

Decision based on average path segment passes.
A path segment is a pair of adjacent waypoints in the
movement sequence—a straight line from one way-
point until the character reaches the next one. The
number of times a character passes a path segment
shows how it has moved on that segment, indepen-
dent of the direction. We calculate the number of
average path segment passes by dividing the total
number of path segment passes by the number of dis-
tinct path segments.

It’s trivial to conclude that, when the character
keeps moving on the same path, this number rises for
the segments on that path. Because moving on the
same path also means that no new waypoints are cre-
ated (after all, a set of waypoints already describes the
path), the number of distinct path segments remains
constant, whereas the number of total and average
path segment passes rises steadily. This is the typical
case for bots, as seen in Figure 1f.

Human players, however, create new path seg-
ments continuously because random movement cre-
ates new segments between old waypoints or touches
yet unexplored areas. Thus, the number of both dis-
tinct and total path segments keeps increasing, which
leads to a low number of average path segment pass-
es—a number that remains constant over the run of
the game, usually well under two average passes per
path segment.

By harnessing this difference, we can easily distin-
guish between bots and human players. Although the
bot game traces show steadily rising numbers as the
game commences, the number for the human game
traces settles down at a constant low level. For our
approach, we chose average path segment passes over
average waypoint passes because we found the former

to be a more robust indicator. Although both numbers
describe the same principle and lead to similar graphs,
path segment passes are significantly less likely to be
repeated accidently. To pass a waypoint a second time,
the character must visit the same location a second
time. To pass a path segment for the second time, the
character must be at the same location and move to
the same waypoint next.

Decision based on repetitions in the waypoint se-
quence. Bots always take the same paths, and al-
though they might not move through the exact same
coordinates, their route still contains many and long
repeating subsequences when compared to human
routes. The LCP values from the waypoint sequence
suffix array exactly capture this property. We calcu-
late the average LCP value to ensure that the route
must contain not only long but also many repetitions
to display clearly suspicious numbers. To calculate the
average LCP value, we sum up the LCP values of all
entries in the suffix array and divide this by the num-
ber of entries. An average LCP of five means that for
every waypoint in the waypoint sequence, the sub-
sequence of the next five waypoints is repeated some-
where else. Humans typically never get close to the
LCP values that bots reach because it’s difficult to
consistently keep passing the same waypoints in the
same sequence. The average LCP for humans settles
on a low level, whereas bot LCPs rise as they visit the
same path over and over again. This provides a good
discriminator between humans and bots.

Implementation and Evaluation
To evaluate our approach, we chose WoW, by far the
most popular MMOG today. We started by setting
up a WoW server and collecting game traces for two
different bots and 10 different human players. For the
server, we modified the ArcEmu open source WoW
server emulator (http://arcemu.org) and logged all in-
coming and outgoing traffic and additional informa-
tion about the game state in human-readable format
to a text file.

Obtaining Traces
We prepared template game characters at level 12 for
four character classes (warrior, paladin, mage, and war-
lock). To obtain human test data, we instigated a LAN
party for an evening (four hours) and had seven people
play the game on it, with three more joining over the
Internet. The probands ranged from regular WoW
players to beginners who had never played the game
before. During the test gaming session, we told the
players to concentrate on farming so that their gaming
style was more likely to resemble that of bots.

To create bot game traces, we ran both the popular,
subscription-based Glider bot (www.mmoglider.com)

Online Gaming

 www.computer.org/security 23

and the free ZoloFighter bot (www.zolohouse.com/
wow/wowFighter), with the same template characters
as the human players. We created two game traces per
bot, using different bot paths each time. Blizzard re-
cently sued the company that developed Glider, which
clearly shows how seriously game providers are taking
the botting threat (see http://forums.worldofwarcraft.
com/thread.html?topicId=14910002728&sid=1).

The WOWalyzer
Next, we fed our traces into the WOWalyzer, a Java
program we developed to visualize and analyze game
traces based on the methods described earlier. As ex-
pected, the human movements looked random, with
very few waypoints or path segments passed more than
once; the bots, however, quickly showed repeating
movement patterns. Depending on the length of the
bot path and the number of enemies along the way,
it took between 10 and 45 minutes until the beaten
track was clearly visible from the movement graph.

Detection based on average path segment passes.
Looking at the number of average path segment
passes, the bot samples exhibited steadily increasing
numbers, as Figure 2 shows, with the slope depend-
ing on the bot path’s length. The noticeable dip of the
ZoloFighter sample around time 1,800 owes its shape
to the fact that a human player took over at roughly
packet 1,200. The goal was to purposely disrupt the
bot path and evaluate the influence on our detection
mechanism. Later, at packet 1,800, we taught the bot
a new path, which let the number of average line seg-
ment passes rise again. In sharp contrast, the human
samples show steadily low numbers, settling down
below two.

Detection based on repetitions in the waypoint
 sequence. To measure repeated subsequences in the
waypoint sequences, we calculated the average LCP of
the suffix array created from the waypoint sequence.
As Figure 3 shows, the bot samples show significantly
higher values than the human samples, because they
contain a lot more as well as longer repeated subse-
quences. According to the graph, the human players
didn’t move in repeated patterns, which kept the aver-
age LCP on a stable low level below two, sometimes
even below one.

Our Approach’s Accuracy
The test results show that our technique can reliably
distinguish between bots and humans. In general, we
see that after a short time, the numbers for bots and hu-
mans start to diverge, as the bots begin repeating their
movement pattern on their second run. The detection
metrics trigger a bot alert whenever the number of av-
erage path segment passes or the average LCP reaches
a certain threshold. In our implementation, we set the
threshold for both metrics to five, which detects all
bots within 12 to 60 minutes, while ensuring that no
humans are falsely classified as bots. Once these values
are reached, the trend continues, and the values never
go back to normal as long as a bot is in control.

Our testing shows that it takes WOWalyzer less
than two seconds to process four hours of gaming
time on a single-core, 1.6-GHz Pentium-M. How-
ever, we propose using a sliding window of two hours
to make the approach scale well; the time consump-
tion of some processing steps rises at a quadratic rate.
A shorter observation window also improves the ap-
proach’s results for scenarios in which a human player
plays for a while before switching over to a bot in

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Time (movement packets received)

A
ve

ra
ge

 n
um

be
r

of
 t

im
es

a
p

at
h

se
gm

en
t

w
as

 p
as

se
d

0

Zolo Fighter trace A-Bot
Zolo Fighter trace B-Bot
Glider trace A-Bot
Glider trace B-Bot
Niki-Human
Georg-Human
Babsi-Human
Mex-Human
Steve-Human
Birgit-Human
Markus-Human
Doris-Human
Heinzi-Human
Michi-Human

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Figure 2. Average path segment passes. As bots only move on a preconfigured path over and over again, they keep passing the same

segments, so this number rises. Humans rarely manage to move multiple times in the same pattern.

Online Gaming

24 ieee seCurity & PriVaCy

an attempt to “hide” bot movements behind human
activity. Once the human player’s data slide out of the
observation window, their diluting effect on the aver-
age numbers our approach calculates ceases.

Evading Detection
Our system is the ideal server-side bot-detection
mechanism because it works completely transpar-
ently to the player, making it difficult for someone to
discover what exactly triggered an account ban. This
transparency also has the advantage of not impacting
the gaming experience for honest players in any way.
However, system discovery would ultimately lead
to attempted countermeasures. Although our pre-
liminary tests show that our system can distinguish
between bots and humans, a bot could still avoid de-
tection if it were tailored specifically to our approach’s
analysis mechanism.

One evasion vector for bots would be to use very
long paths, which makes the number of repetitions
rise more slowly. However, the player must cre-
ate those long paths, which means that the amount
of time that a person saves by using a bot decreases
drastically. Simply using paths shared on the Internet
increases the risk that those paths are also known to
the game provider’s bot-detection system.

Another way for bots to evade detection would
be to move the character more randomly than it does
already. However, the crucial point remains that all
current bots for WoW use a navigation system that re-
lies on waypoints, which inherently makes them sus-
ceptible to our and related approaches. Even though
randomizing the movement along a path would im-
pact the LCP values, the number of average line passes

would hardly change. More general random move-
ment would make the character susceptible to doing
something stupid, thereby arousing suspicion from
other human players.

O ur tests with WoW prove that our approach ef-
fectively distinguishes between bots and humans

and is computationally fast enough to monitor large
numbers of players concurrently. Hence, we believe
that our technique is an improvement over the sparse
countermeasures currently in place in MMOGs.

To address the limitations we just mentioned and
raise the bar for bot writers who aim to avoid detec-
tion, we intend to extend our system with statistical
heuristics. Furthermore, we plan to test our approach
on other MMOGs, such as Lineage and RuneScape.
As long as bots don’t replace their waypoint-oriented
navigation with a different paradigm, we predict we
can stay competitive in this arms race between bot
programmers and game providers by continuously ex-
tending our method.

References
J. Yan and B. Randell, “A Systematic Classification 1.
of Cheating in Online Games,” Proc. 4th ACM SIG-
COMM Workshop on Network and System Support for
Games, ACM Press, 2005, pp. 1–9.
G. Hoglund, “4.5 Million Copies of EULA-Compli-2.
ant Spyware,” Oct. 2005; www.rootkit.com/blog.
php?newsid=358.
C. McSherry, “A New Gaming Feature? Spyware,” Elec-3.
tronic Frontier Foundation, Oct. 2005; www.eff.org/
deeplinks/2005/10/new-gaming-feature-spyware.

A
ve

ra
ge

 L
C

P
va

lu
e

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Time (movement packets received)

0

Zolo Fighter trace A-Bot
Zolo Fighter trace B-Bot
Glider trace A-Bot
Glider trace B-Bot
Niki-Human
Georg-Human
Babsi-Human
Mex-Human
Steve-Human
Birgit-Human
Markus-Human
Doris-Human
Heinzi-Human
Michi-Human

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Figure 3. Average length of repeating waypoint subsequences (LCP). Bot movement patterns contain many and often long repeating

subsequences, resulting in a high LCP. In contrast, humans hardly manage to repeat sequences of several waypoints in a row, thus their

LCP stays at a stable low level.

Online Gaming

 www.computer.org/security 25

R. Heeks, “Current Analysis and Future Research 4.
Agenda on ‘Gold Farming’: Real-World Produc-
tion in Developing Countries for the Virtual Eco-
nomies of Online Games,” Working Paper Series, vol.
32, 2008; www.sed.manchester.ac.uk/idpm/research/
publications/wp/di/di_wp32.htm.
Torak, “Bots: What *Is* NCSoft Doing?” IGN.com, 5.
18 Oct. 2006; http://l2vault.ign.com/View.php?view
=Articles.Detail&id=15.
D.H. Douglas and T.K. Peucker, “Algorithms for the 6.
Reduction of the Number of Points Required to Rep-
resent a Line or its Caricature,” The Canadian Cartogra-
pher, vol. 10, no. 2, 1973, pp. 112–122.
H.-F. Eckey, R. Kosfeld, and M. Rengers, 7. Multivariate
Statistics, Gabler, 2002.
D. Gusfield, 8. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology, Cambridge
Univ. Press, 1997.

Stefan Mitterhofer is a master’s student in software engineer-

ing and Internet computing at the Vienna University of Tech-

nology. His main research interests lie in the algorithms, inner

workings, and security of distributed systems and Internet se-

curity. Mitterhofer is a student member of the IEEE. Contact

him at sm@seclab.tuwien.ac.at.

Christopher Kruegel is an assistant professor in the computer

science department at the University of California, Santa Bar-

bara, and the holder of its Eugene Aas Chair in Computer Sci-

ence. His research interests are computer and communication

security, with an emphasis on malicious code analysis, Web

security, and intrusion detection. Kruegel has a PhD in com-

puter science from the Technical University Vienna. He also

serves as an associate editor for the International Journal of

Information Security. Contact him at chris@cs.ucsb.edu.

Engin Kirda is a faculty member of the networking and secu-

rity department at the Institute Eurecom. His research inter-

ests are software and network security with a focus on Web

vulnerability detection and prevention, binary analysis, and

malware detection. Kirda has a PhD in computer science from

the Technical University of Vienna. He is a member of the IEEE.

Contact him at kirda@eurecom.fr.

Christian Platzer is an assistant professor in the computer-

aided automation department at the Vienna University of

Technology. His research interests are computer and commu-

nication security, with an emphasis on fraudulent behavior

and spam-related topics. Platzer has a PhD in computer sci-

ence from the Technical University of Vienna. Contact him at

cplatzer@seclab.tuwien.ac.at.

