SOLDER: Retrofitting Legacy Code with
Cross-Language Patches

Ryan Williams
Northeastern University
Boston, USA
williams.ry @northeastern.edu

Abstract—Internet-of-things devices are widely deployed, and
suffer from easy-to-exploit security issues. Due to code and plat-
form reuse, the same vulnerability oftentimes ends up affecting
a large installed base. Because patch deployments tend to be
focused on server-side vulnerabilities, client software in large
codebases such as Apache may remain largely unpatched, and
hence, vulnerable. This problem is exacerbated by the prevalent
use of some of these large codebases in IoT deployments, making
their use more widespread.

In this paper, we address this issue of leaving latent vulnera-
bilities in legacy codebases. We propose SOLDER, a framework
to patch or retrofit legacy C/C++ code by replacing any target
function with a newly-implemented one in a safe language such as
Rust. This allows application users to freely patch their software
in a safe language whenever a patch becomes available, without
the need for waiting on developers to release an official patch.
When dealing with mission-critical systems, it may be infeasible
to wait the months it takes, on average, for patches to be released.
Internally, SOLDER performs this function swapping on LLVM
bitcode, and can either target source code directly to generate
the IR, or if source is unavailable, can lift a binary to LLVM
bitcode before running the analyses and then recompiling back
to binary.

Evaluation on 5 popular codebases shows that SOLDER pro-
duces a valid patched binary that is 2.3% smaller, on average, and
mitigates 11 known exploitable vulnerabilities, while introducing
limited overhead and no new bugs.

I. INTRODUCTION

While there have been efforts to expedite the process for
creating and implementing software patches in response to
vulnerability disclosures [1], the average time-to-patch for
critical vulnerabilities has actually increased up to 205 days
as of May 2021 [2]. These vulnerabilities also have a long
average life expectancy of 6.9 years, where they can remain
latent on a mission-critical system [3], [4]. However, once
a vulnerability has been found, the median time to develop
a fully-functional exploit is much faster, at 22 days [4]. To
date, most patch deployments have been focused on server-side
vulnerabilities [5]-[7], leaving client-side applications such as
browsers, firmware, or SSH clients more open to threats.

A problem with updating or patching client-side legacy
codebases is that the analyst may be unfamiliar with the
original implementation language, or the source code and com-
pilation environment are not available. Moreover, the choice of
implementation language can greatly impact the quality of the
patch, as software written in C/C++ tends to suffer from some

Anthony Gavazzi
Northeastern University
Boston, USA
gavazzi.a@northeastern.edu

Engin Kirda
Northeastern University
Boston, USA
e.kirda@northeastern.edu

every-day programming issues, including dangling pointers,
memory leaks, data races, and buffer overruns/underruns [8].
Certain classes of vulnerabilities are also associated with these
languages, such as memory safety issues. A survey done
by Microsoft shows that since 2006, around 70% of the
vulnerabilities addressed through a security update each year
continue to have memory safety issues [9].

A language such as Rust can, by design, help mitigate
these classes of vulnerabilities. As a memory-safe language,
Rust has been considered by many companies to patch their
software by creating Rust libraries for new software versions,
developing APIs to invoke Rust code, and replacing anywhere
from parts of their code to entire codebases with Rust. For
example, Google and Microsoft have started to investigate the
use of Rust for parts of their codebases and began development
with a mix of C#, Rust and constrained C++ [10]. Mozilla
has integrated the Quantum CSS and WebRender rendering
engines, both of which are written in Rust, into Firefox [11].
Additionally, Facebook has started to build an unofficial Rust
support team since 2017 to investigate the use of Rust at
Facebook [12].

However, rewriting an entire software component with a
new implementation language is resource-consuming work.
Because patching security-critical software is time-sensitive,
and rewriting components of legacy code requires substantial
manual effort, we provide a framework that enables application
users to update legacy code with Rust-based patches without
needing to involve the application developers. SOLDER pro-
vides a platform for application users to target given functions
in a codebase, and replace their definitions with user-provided
patches implemented in a language of their choosing. Based
on a study by Li et al. [13], the majority of security patches are
localized and limited in scope, unlike general software patches.
It is for this reason that we chose to implement patching at
the function-level.

In this paper, we introduce SOLDER, a novel framework
for patching and retrofitting legacy code with functions im-
plemented in safer languages, such as Rust, without the need
for waiting on developers to issue a patch. Using this method,
technically-sophisticated application users and mission-critical
organizations can incrementally patch their client software as
soon as a patch is available even without access to the applica-
tion source code. Using SOLDER, we are able to incrementally

patch legacy codebases at a functional granularity with any
language that has an LLVM front-end.
In summary, our work makes the following contributions:

1) We present a new foundation for cross-language pro-
gram patching and diversification that allows users to
effectively retrofit legacy code;

2) We provide a platform that can also be used for in-
crementally updating legacy code to a more modern
language;

3) We implement a light-weight symbolic execution mech-
anism for verifying the validity of user-defined patches;

4) We evaluate SOLDER on five real-world programs that
cover a wide range of usage scenarios including IoT and
embedded devices and demonstrate its efficacy;

5) We include a security analysis of SOLDER which shows
patches implemented in a language different from that of
the project can still mitigate 11 real-world CVEs while
reducing the number of ROP gadgets that are present.

II. BACKGROUND
A. Motivation of Our Work

SOLDER’s goal is to provide a foundation to patch legacy
code and promote software diversity among homogeneous
software deployments. A problem with updating or patching
legacy codebases is that the analyst may be unfamiliar with
the original implementation language, or that there may be
features needed from another, perhaps newer, language [14]. In
other cases, the analyst may need to apply a patch immediately
for a critical issue as disclosed in a Common Vulnerabilities
and Exposures (CVE) disclosure, where a patch is not yet
provided. Waiting on an organization to release a new, patched
application may be infeasible, but using SOLDER, the analyst
can target the function in the application they wish to replace
with an updated implementation. SOLDER operates entirely
on LLVM bitcode as LLVM is a set of compiler technologies
that is designed around a language-independent intermediate
representation (IR), which allows us to develop a variety of
bespoke transformation and analysis passes.

Using SOLDER, one is able to incrementally update legacy
codebases at a functional granularity. That is, one can take
a legacy C codebase and update individual functions within
it in languages such as C++ or Rust. Because SOLDER is
implemented at the LLVM IR-level, it is language-agnostic
as long as the target codebase has an LLVM front-end (e.g.,
clang, rustc, gollvm). While this means that we primarily
target C family languages in our prototype, we can still extend
it to other languages by implementing an LLVM front end
for them. SOLDER applies patches at the function granularity
due to the tendency of security patches to be very localized.
For example, the vulnerability CVE-2019-11779 for Mosquitto
shown in Figure 1 can be completely patched by updating the
mosquitto_pub_topic_check () function.

Because many manufacturers now opt to stop providing
system update services for their obsolete models, millions of
vulnerable, unpatched devices remain in use [15]. Being able

49 int mosquitto_pub_topic_check(const char =str)
58 {

51 int len = @;

52 + #ifdef WITH_BROKER

23 int hier_count = @;

54 + #endif

55 while(str & striel){

56 if(str[e] == '+' || strle] = "#"){
57 return MOSQ_ERR_INVAL;
58 ¥

59 + #ifdef WITH_BROKER

60 + else if(str[@] = '/'){

61 + hier_count++;

62 + ¥

63 + #endif

64 len++;

65 str = &str[1];

66 ¥

&7 if(len = 65535) return MOSQ_ERR_INVAL;

68 + #ifdef WITH_BROKER
69 + if(hier_count > TOPIC_HIERARCHY_LIMIT) return MOSQ_ERR_INVAL;
78 + #endif

72 return MOSQ_ERR_SUCCESS;
3}
Fig. 1. Snippet of a vulnerable function for CVE-2019-11779 in Mosquitto

MQTT. If st r contains more than 65535 °/°, a stack overflow will occur. The
patch modifications are prefixed with *+’.

to patch legacy or obsolete software is essential to mitigate
known vulnerabilities, and is especially challenging with frag-
mentized devices. When using SOLDER to update a target
project’s language, the user also acquires the added benefit
of inherently minimizing the attack surface (see Section V-D).
This is worth noting as a larger attack surface may make it
easier to mount attacks such as ROP and code reuse [16].
We do not claim that SOLDER guards against every possible
vulnerability, nor that it cannot be bypassed in individual cases
by a skilled, motivated attacker. Its goal is to allow for users to
patch application codebases or binaries without involving the
developers. This provides a means to patching and retrofitting
legacy code. While SOLDER can effectively mitigate some
known CVEgs, its utility is in its general ability to incrementally
update legacy code with safer, more modern languages.

B. Retrofitting Legacy Code

Commercial off-the-shelf (COTS) applications and legacy
codebases are both primary targets for attacks as they tend not
to provide sufficient security features. To mitigate this attack
vector, there have been efforts in retrofitting COTS binaries
and legacy code, typically with wrappers [17]. These generic
wrappers are meant to act as an intermediate layer that can
observe and modify data passing through the interfaces, acting
as a form of sanitization and validation [18]—[20]. The main
challenge with retrofitting some legacy code is identifying
where these sensitive operations occur [21].

As retrofitting legacy code is typically done manually,
program analysis has been shown to help this process by
guiding analysts to critical program points [22]. However, this
still necessitates making modifications directly to the target
codebase, and having a strong understanding of the system,

whereas SOLDER allows developers to provide a functional
patch without needing to understand the holistic codebase.

C. Binary Patching

Binary patching provides a means to fixing bugs in appli-
cations when part of an application’s source code has been
lost, or when an environment the application requires is not
available. For example, many embedded systems and bare-
metal systems do not have the available source code, or the
original compilation toolchain, which makes patching them
difficult, or even impossible. Although tools such as Ghidra
or IDA Pro provide a robust platform for reverse engineering
and binary modification, the requirement of having an ad-
vanced understanding of assembly language limits its general
applicability, and the manual work required is non-trivial. For
example, Microsoft has spent a significant amount of effort to
manually fix CVE-2017-11882 using tools such as these [23].

SOLDER provides a novel way to perform program patching
without directly touching the assembly language. We also
assume that we do not have access to paid tools such as IDA
Pro for finding patch insertion points like in BinPatch [24].
Instead, we utilize the expressiveness of LLVM bitcode, and
perform all of SOLDER’s operations at that level. While other
tools like BinPatch modify binaries by inserting long jumps to
the patch code, we focus on actually removing the vulnerable
code. This addresses the potential security issue BinPatch
introduces with long jumps violating security requirements
like control flow integrity (CFI). This makes binary patching
more feasible, and saves both time and human effort.

III. DESIGN OVERVIEW
A. Objectives and Assumptions

SOLDER sets out to provide a semi-automated framework
for swapping out discrete components within a codebase using
user-provided, or publicly-available source patches. Our tool
currently works at the function-level by targeting specific func-
tions within a project, removing all references to that function,
and replacing them with the new target functions. While there
are various use cases for SOLDER, such as program hardening,
program diversification, program understanding, or incremen-
tally updating a codebase’s implementation language; we are
primarily working to address the gap between vulnerability
disclosure and patch availability. Using SOLDER, a user can
implement their own patch for a known-vulnerable function
as soon as they have one working, or they can use a publicly
available patch that is yet to be pushed into an automatic
update.

Currently, we assume that source code is available for the
codebases that we target. However, SOLDER can also work
on binaries, in which case there are some limitations (see
Section VI-C). SOLDER does not, however, modify the source
code of the project itself. Instead, it makes a set of LLVM
passes that resolve the functions to swap at compilation and
linking time. While our use case here assumes access to
source, we have done a number of tests to show that SOLDER
is capable of applying this patching technique to binary targets

cee [\
GET (CVE-*)
| —p > > —p
NVD database C2Rust Transpiler patch.rs

Fig. 2. Workflow of SOLDER’s patch generation component for translating
publicly-available native patches to a Rust equivalent.

without access to the source. We also assume that any target
codebases can be compiled with an LLVM frontend (e.g.,
Clang), as our analyses operate on bitcode. We also assume
that any patches from the NVD database are correct, but user-
provided patches need to be verified.

An overview of SOLDER’s workflow is shown in Figure 3.
The following sections go into more detail on each of the
corresponding steps shown there.

B. Patch Generation

The first thing SOLDER requires is a patch for a given
project. Currently, we rely on patches detailed in the National
Vulnerability Database (NVD). If there is a source patch
provided via a git commit, we take the diff to find the parent
function, and translate the whole function into Rust using
C2Rust [25]. The Rust patch is put into a separate file and
compiled to LLVM bitcode while the target project is being
compiled or lifted to the same IR. While this technique relies
on the accuracy of a provided patch, this is the simplest
approach to using SOLDER in an automated way. Our target
use case, however, would typically be that the user has devel-
oped an out-of-source patch independently of the application
developers, allowing them to implement the patch without
waiting for one to be rolled out in an update.

While it is true that using a direct translation to Rust would
typically use primarily unsafe code, we found that despite this,
a direct translation using unsafe Rust was still better than
keeping the native legacy language. Implementing updated
code in Rust provided a reduction in attack surface (via ROP
gadgets) even when leaving the vulnerability latent.

If a patch is available from NVD or another public source,
we simply transpile that patch to Rust, and inject that into
the project with SOLDER. Otherwise, in the case where a
vulnerability is disclosed, but yet-to-be patched, we can either:
(i) write a patch on our own in the language of our choice;
or (i) transpile the vulnerable function to a Rust equivalent
and use that as a patch. In the second case, we may not be
mitigating the vulnerability, but we are altering the attack sur-
face, while potentially implicitly patching the vulnerability if
it is something memory-related, for instance, as Rust provides
strong memory safety guarantees. There is a potential trade-off
here where applying an unvetted patch prematurely may result
in leaving a vulnerability present or even introduce a new one.
However, we found that refactoring legacy code to Rust always
had a net benefit. The workflow of the patch generation step
is shown in Figure 2.

ﬂatch rs

if *inchr as libc:ic_int ==
as 132 {

-

A
y
2

name-mangler

let fresho = outchr;
outchr = outchr. (1);
*fresho = as libc::c_char

Iy

}
patch.bc

vuln.c

while ((*inchr ==) &
(inchr[1] !=))

linked. Il

define i32 @vuln_func(i32 %) #0 {
1lvm-1link e

=

define 132 @patch(i32 %0) #o {

=

Iy

*outchrs+ = *inchr+;
*outchr++ = *inchr+;

L AN p
i o) [- 2
o - — injector-pass \
</> pased? /> | [main } [patch]

Binary testing L

Deployment

(Discard)

\ AN

vuln_func

exit

~——

/

Fig. 3. Overview of SOLDER’s workflow shown in its 4 stages. The vulnerable function ap_escape_quotes () from Apache (CVE-2021-39275) and a
patch written in Rust are first compiled to bitcode (a). Next, they are linked with the symbol names in the patch mangled (b). The patch injection step swaps
out the vulnerable function with the patch (¢). The compiled binary is then tested before being ready for deployment (d).

1) Patch Testing: Once we have a candidate patch, we test
the patch to provide some guarantees that it will not be intro-
ducing any previously-unknown bugs, or semantic errors. First,
we run any unit tests which may be available with the target
program. Next, using the LLVM-based symbolic execution
engine, KLEE [26], we run symbolic execution against the
patch that we generated. Because symbolic execution scales
poorly, we only run it against the patch in isolation instead
of in the context of the entire program. Since we chose to
use Rust-based patches, in order to test them using KLEE, we
require LLVM bitcode of the core Rust libraries. This testing
gives us a quick result indicating the presence or absence
of any bugs, as KLEE attempts to explore every path in the
program.

We initially explored using QSYM [27] as well as KLEE.
Using a greybox fuzzer approach had some drawbacks such as
needing seed input, and issues working on network protocols.
We opted for using symbolic execution over fuzzing here
because we are operating on the LLVM IR level, which made
KLEE a good option in our workflow. We are also testing
patches that are not too large, so the typical path explosion
problem was not encountered in our tests. The other added
benefit is that with KLEE, whenever a new path is explored,
we can output a new test case, and these test cases can then
be replayed against the final binary that we produce.

For our testing setup, SOLDER only runs KLEE against a
target patch for 30 seconds before terminating. We chose this

short amount of time as it does not incur too much overhead,
while also providing 84% instruction coverage on average, as
shown in Table VI.

C. Compilation to Bitcode

Once we have the patch from our previous step, it is time to
compile that and the target project to LLVM bitcode. SOLDER
operates on bitcode as opposed to source due to the fact that it
allows multiple source languages to be mutually-intelligible.
For instance, swapping out a function in a C-based project
with a new function written in Rust is straightforward when
that operation happens at the bitcode level. For patches written
in C/C++ or Rust, this step is straightforward, as it only
requires that we provide certain compile-time flags to rustc
or Clang. However, when compiling the target program to
bitcode, we must accommodate both the case where we have
access to source/build files and the case where we only have
the compiled binary.

When we have access to the project’s source, it is just a
matter of wrapping the build process to force emitting LLVM
bitcode. This is done by setting the compilation flags for Clang
to output the intermediate files. In the case of some larger
projects, we also used Whole Program LLVM (WLLVM) [28]
for bitcode extraction, and eventually moved to integrating
this into SOLDER as it simplified the overall process. Using
WLLVM simplified the building to LLVM bitcode process
because it acts as a drop-in replacement for gcc in any build
system. This saves a lot of time in the case of projects where

we would otherwise need to manually modify the build system
to output bitcode.

In the case of no access to source, we use the tool Ret-
Dec [29] for lifting the binary to LLVM bitcode. As this
lifter supports most executable file formats and architectures, it
provides ample support for SOLDER to patch binaries without
access to source code. While we tested using SOLDER without
access to source, those tests were constrained to smaller
programs, and evaluation on more real-world programs is left
to future work. SOLDER’s compilation to bitcode step is shown
in Figure 3(a).

D. Component Linking

To target functions for swapping in from another file, we use
the LLVM built-in, 11vm-1ink, to link together each of the
components we compiled to LLVM bitcode. To avoid errors
for multiply-defined symbols, we run another pass at this
stage that mangles function names. This obviates the need for
worrying about reusing function names in the user-provided
patch. Details on this pass are outlined in the next subsection.
However, the intermediate linked file that is created here will
be larger as it may include multiple definitions of the same
functionality as they were necessary for compiling the patch
independently. These superfluous functions will be properly
cleaned up in the subsequent steps. Once everything is linked
into one bitcode file, SOLDER is then ready to invoke the
LLVM pass that swaps the given function(s) with the functions
in the provided patch. The component linking process is shown
in Figure 3(b).

1) Function Name Mangling: Because we may be trying
to link arbitrarily many files with matching symbol names
(think multiply defined main function symbols), we first
have to run an LLVM pass that prepends function names
and global variables with their component file ID, or some
other unique ID specified by the user. Once we mangle
the names accordingly, we are able to successfully link all
the bitcode files. This name mangling pass also accepts an
exclude parameter that allows the user to provide a list of
functions not to mangle. This is useful for specifying which
source file has the main function that we wish to keep so
we do not have to specify a program entrypoint later. This
pass also accepts the prefix parameter that allows the user
to specify a static value to prepend to function and global
variable names for mangling. For example, a function named
read_config in the patch file would be transformed to
_ignore_read_config when the prefix is set to ignore.

E. Patch Injection

The LLVM pass that handles the actual swapping of func-
tions takes the parameters target and replacement.
This is used to target the function we wish to swap and
point to the implementation of its candidate replacement.
The only requirement here is that the function parame-
ters and return type match. We cannot, for instance, re-
place an int add(...){...} function with a float
add(...){...} function as they accept different types

when they are called. We can, however, replace a C-
defined int add(...){...} with a Rust-defined pub fn
add(...) — u32 {...}. As long as the parameters and
return types match, the rest of the function’s implementation
is up to the discretion of the patch author.

Once the function patching has taken place, we then re-
move any extraneous functions that were linked in using
SOLDER’s def-use analysis pass. The Rust patches tend to
need more helper functions defined, but some of these are
never used, and can make our binaries larger than they need
to be. For instance, writing a standalone patch for an addition
function in Rust results in an extra four functions when
outputting LLVM bitcode. The first of these functions is
rust_eh_personality, which is a language item used
by the failure mechanism of the Rust compiler. While this
is necessary in our initial patch compilation step, we can
safely remove it at this stage as all it does is add bloat to
our output binary. By using our data-flow analysis to find
dependencies between functions, we can simply remove those
linked functions that have no references without breaking any
other functionality. The workflow of patch injection is shown
in Figure 3(c).

F. Build Testing

Once all the preceding steps have taken place, we can
now generate the object code from the patched bitcode.
This step is built on LLVM’s static compiler, 11c. SOL-
DER outputs the bitcode to an object (.o) file, then
reuses the compile commands from the original project.
The compile commands can be extracted either by us-
ing the flag -DCMAKE_EXPORT_COMPILE_COMMANDS=0ON
for CMake, or by wrapping the compilation process using
Bear [30]. In the case that we do not have access to the
source and build environment, this last step is scripted using
Clang. SOLDER attempts to compile the object file without any
options, then finds any missing dependencies and attempts to
resolve those incrementally using a trial and error approach.

Once we have recompiled the binary, we run any test suites
that are provided with the codebase in the case of source and
tests being available. This process is shown in Figure 3(d).

IV. IMPLEMENTATION

Our SOLDER prototype implementation is built as a set of
compilation passes on LLVM [31]. SOLDER works on C/C++
and Rust programs that are compiled into LLVM bitcode.

For our patch generation stage, we extended the tool
cve-search [32] to follow referenced links in order to
automate getting source-level patches. For translating the
patches from C to Rust, we use C2Rust [25]. Next, for the
patch testing, we use KLEE [26], which operates on LLVM
bitcode, just like the rest of SOLDER. KLEE did not require
any modifications to work in our system.

The linking stage of SOLDER requires handling multiply-
defined symbols. To facilitate this step, we implemented the
name-mangler LLVM pass. Next, SOLDER targets a given

TABLE I
CHARACTERIZATION OF CODEBASES. WHERE #CVES IS THE NUMBER OF
CVES TESTED FOR EACH CODEBASE, AND #FUNCTIONS IS THE TOTAL
NUMBER OF FUNCTIONS AVAILABLE TO TARGET.

TABLE II
INCURRED AVERAGE OVERHEAD OF RUNNING EACH OF SOLDER’S STAGES
ON OUR TARGET CODEBASES FIVE TIMES. STANDARD DEVIATION (o) FOR
EACH IS SHOWN IN PARENTHESES.

Program #CVEs #LOCs #Functions Source Language Program e Stink Sswap JS—

OpenSSL [34] 2 165,630 1,773 C OpenSSL 3.8s (0.1) 1.3s (0.08) 1.7s (0.2) 199.4s (1.1)

OpenSSH [35] 3 130,421 1,586 C OpenSSH 2.0s (0.1) 0.7s (0.1) 0.8s (0.1) 33.55 (0.9)

Apache [36] 2 52,600 2,490 C Apache 1.9s (0.1) 0.4s (0.08) 0.4s (0.1) 55.6s (0.3)

Mongoose [37] 3 55,904 275 C Mongoose 1.5s (0.2) 0.04s (0.01) 0.05s (0.02) 1.7s (0.1)

Mosquitto [38] 1 38,360 387 C Mosquitto 1.7s (0.08) 0.2s (0.08) 0.3s (0.05) 5.1s (0.1)
TABLE III

function and replaces it with a new implementation. This is
implemented as another LLVM pass, injector-pass.

Lastly, for evaluation purposes, we built on RetDec [29] to
test lifting binary to LLVM bitcode and back. For evaluating
ROP gadget counts, we used the ROPgadget tool [33].

SOLDER is implemented with 775 lines of C++, 522 lines of
Rust, 304 lines of Python, and 126 lines of Bash, not including
the tools we used unmodified.

V. EVALUATION

In this section, we evaluate the prototype of SOLDER. We
conducted: (i) micro-performance benchmarks to measure the
overhead of each step of patching; (ii) macro-performance tests
on 5 real-world programs that run on Linux-based embedded
systems to measure SOLDER’s overall overhead; (iii) tests to
show the correctness of the patched binary; and (iv) a security
analysis of how SOLDER can mitigate known vulnerabilities.
The codebases evaluated are characterized in Table 1.

A. Micro-Performance Tests

The compile-time overhead of patching target programs can
be broken down into four steps as shown in Table IL: (i)
compilation of the target codebase and patch to LLVM bitcode
(She); (i) linking the patch into the target project (Si;nk); (iii)
swapping the patched function in place of the original (Ssyap);
and (iv) recompiling the patched binary (Se,i:) at the end of
the workflow.

As we can see in Table II, the two stages that incur the most
overhead are bitcode generation, and recompilation. Because
some projects are larger, the bitcode generation step (Sp.) can
take considerably longer as we see with Mongoose versus
OpenSSL. The main bottleneck here is that we must output
bitcode for the Rust patch as well as the target project. While
the Rust patch is typically very small, compiling the target
project itself to LLVM bitcode may be non-trivial. The last step
of recompilation (S¢;;:) can also potentially slow down the
process; however, it is always roughly the same overhead as
simply compiling the target project (see Table III). It should be
noted that the primary component of SOLDER which performs
the function swapping always incurs a low overhead compared
with the compilation steps.

We omit the step of patch generation as in our model, this
stage may be manually done by the user. However, there are
cases where we have automated the process of generating
a patch in Rust from a publicly-available patch in C/C++,
as shown in Figure 2. In our evaluation, the patches we

AVERAGE COMPILATION TIME USING SOLDER VERSUS GCC (IN SECONDS)
OVER FIVE RUNS. STANDARD DEVIATION (o) SHOWN IN PARENTHESES.

Program Compile-time (SOLDER) Compile-time (gcc)
OpenSSL 206.2s (0.8) 181.0s (1.0)
OpenSSH 37.0s (1.9) 31.8s (1.3)
Apache 58.3s (1.0) 55.5s (2.1)
Mongoose 3.3s (0.3) 1.6s (0.3)
Mosquitto 7.3s (0.3) 5.1s (0.1)

used were all pulled from NVD and transpiled from their
native language to Rust, following this automated approach.
Furthermore, we tested replacing arbitrary functions in each
codebase for the purpose of incremental updating, and not
vulnerability mitigation. In these cases, SOLDER is able to
directly translate a target function into a Rust equivalent with
negligible overhead.

B. Macro-Performance Tests

For our 5 evaluation targets, we measured the end-to-end
overhead of using SOLDER. While all 5 targets were written
in C (see Table I), they could just as easily have been im-
plemented in any other language that has an LLVM frontend.
We chose these projects due to their ubiquity, especially in
embedded/IoT deployments. Working with these large, C-
based projects is also more in-line with our model of patching
or retrofitting legacy codebases.

Compile-time Overhead. We measure the whole compila-
tion process of running SOLDER on our 5 target programs. On
average, SOLDER incurs a 36.9% overhead. Table III shows the
difference in compile times using SOLDER versus the default
compiler for each project.

Runtime Overhead. As SOLDER provides patches directly
to the target codebase, the only overhead incurred is at
compilation time. When analyzing runtime statistics, there is
no discernible difference in performance between running the
binary with a native patch or a SOLDER-based patch.

Binary Size Measurement. Because the programs we target
typically run on resource-constrained devices, it is important
that SOLDER does not result in a binary that is too large.
Table IV shows the difference in size of the natively-patched
binary and the Rust-based patch implemented from SOLDER.
The only instance where SOLDER generates a larger binary is
with OpenSSH. This was due simply to the size of the patch;
however, we believe that if we manually wrote the patch in
a more optimized way, the resulting binary would be smaller.
Overall, we see that on average, using SOLDER results in a

TABLE IV
SIZE OF SOLDER-PATCHED BINARY VERSUS THE NATIVELY-PATCHED

COUNTERPART.
Program Binary Size (SOLDER) Binary Size (Native)
OpenSSL 4600kb 4800kb
OpenSSH 2700kb 2600kb
Apache 1100kb 1100kb
Mongoose 80kb 90kb
Mosquitto 600kb 600kb

binary that is 2.3% smaller than its native counterpart. In our
tests, we found that the reason for smaller binaries was due
to SOLDER’s def-use analysis stage. That is, after the Rust-
based patch is inserted, the def-use analysis stage then looks
for any unused functions that can be safely removed. In these
cases, we found that some Rust-based patches do not utilize
functions that the original patch did. When this is the case,
those functions in question can be safely removed from the
codebase, thus reducing the overall compiled size.

C. Correctness of Patched Binary

In order to provide guarantees on the correctness of the
patched binaries SOLDER produces, we re-run any unit tests
that are provided with the project. Table V shows the number
of tests run for each codebase, and the respective number of
crashes observed. However, if test suites are not available, or
if we are assuming no access to source at all, then we need to
rely on symbolic execution. SOLDER uses KLEE to thoroughly
test the user-provided patch before swapping it into the target.
Table VI shows the amount of test coverage provided by KLEE
and the errors reported for each.

For all of the included unit tests we ran against our
targets, there were no errors reported for our SOLDER-patched
version. However, when running KLEE against one of our
individual patches, we found an out-of-bound pointer error
in a Mongoose patch. Because our patch was a direct Rust
translation of the one provided by the Mongoose developers,
we also tested their patch, and found that the same error was
triggered. This shows that while SOLDER did not introduce
any new errors, those that are latent can still be present when
the patch is not adequately vetted.

To provide a real-world test on the correctness of a patched
binary, we compiled a patched version of OpenSSH, and ran
sshd on a production server for two weeks without any
reported errors, or issues from users. Over the course of this
two week-long experiment, we had an average of 27 SSH
connections to the server per-day. This test gives us confidence
that our version of OpenSSH’s sshd with Rust-based patches
does not introduce any new issues that were previously not
present.

D. Security Analysis

When evaluating SOLDER, we targeted specific commits for
the codebases where a known CVE was present. A summary
of the CVEs we targeted per-codebase is shown in Table VII.
The CVEs we targeted were all relatively localized as far
as how many functions needed to be modified to provide a

TABLE V
NUMBER OF RESULTING CRASHES FROM TESTS RUN ON
SOLDER-PATCHED BINARIES. NEW ERRORS ARE BUGS THAT WERE NOT
TRIGGERED WITH TESTS PRIOR TO PATCHING.

Program #Tests Run #Errors Found
(#New Errors)

OpenSSL 243 0 (0)

OpenSSH 73 0 (0)

Apache 692 0 (0)

Mongoose 30 0 (0)

Mosquitto 188 0 (0)

TABLE VI

AMOUNT OF COVERAGE PROVIDED BY KLEE ACROSS PATCHES FOR EACH
CODEBASE AND THE RESPECTIVE NUMBER OF ERRORS FOUND.

#Errors Found
(#New Errors)

Program (#Patches) Instruction Coverage

OpenSSL (2) 73.61% 0 (0)
OpenSSH (3) 95.00% 0 (0)
Apache (2) 87.59% 0 (0)
Mongoose (3) 83.05% 1 (0)
Mosquitto (1) 81.97% 0 (0)

working patch. Our evaluation made two observations: (i) the
patches we provided that were written in Rust mitigated all
11 of these known CVEs, and (ii) when providing a Rust-
based patch, the number of ROP gadgets present in the binary
was reduced compared to native patching. ROP gadgets are
machine instruction sequences that an attacker can execute in
order to hijack program control flow. Chaining these gadgets
together allows an attacker to perform arbitrary operations,
hence the importance in minimizing their count as much as
possible.

While our goal is not to just reduce the number of ROP
gadgets present in a binary, this added benefit is helpful for
reducing the attack surface of our targets. Figure 4 shows the
total number of ROP gadgets present for each binary where:
DS(Rust) is where we replace the vulnerable function with
a direct Rust translation, Patch(Rust) is where we implement
a Rust-based patch, NP is a native-implemented patch, and
UM is the unmodified, vulnerable project. In all of the above
cases, the SOLDER-generated binaries have fewer ROP gadgets
present, even when we only provide a direct translation of
a given function and do not patch a vulnerability. Overall,
we observe that SOLDER reduces ROP gadget count by an
additional 3.7% compared to the native patches, on average.
This shows the feasibility of SOLDER being used over time to
further harden a project via its patch.

E. Case Studies

We have shown at a high-level how SOLDER works in
Section III. Next, we will provide a case study for one of
the evaluated CVEs as an example to illustrate how SOLDER
works in more detail.

1) OpenSSL (CVE-2021-23841): The OpenSSL pub-
lic API function X509_issuer_and_serial_ hash at-
tempts to create a unique hash value based on the issuer

TABLE VII
CHARACTERIZATION OF CVES.

Program CVE App Name CVE Type
OpenSSL CVE-2021-23841 OpenSSL v<1.1.1i Remote DoS
CVE-2021-3712 OpenSSL v1.1.1-1.1.1k Remote DoS
CVE-2016-6515 sshd v< 7.3 Remote DoS
OpenSSH CVE-2021-41617 sshd v6.2-8.8 Privilege escalation
CVE-2021-28041 ssh-agent v<8.5 Double free
Apache CVE-2021-39275 httpd v< 2.4.48 Buffer over-write
CVE-2021-40438 httpd v< 2.4.48 Malicious request forwarding
CVE-2021-26530 HTTPS Server Remote OOB write attack
Mongoose CVE-2019-19307 MQTT v6.16 Remote DoS
CVE-2019-13503 MQTT v6.15 Heap-based buffer over-read
Mosquitto CVE-2019-11779 Broker v1.5.0-1.6.5 Stack overflow

UM
140000 — — NP

DS (Rust)
120000 == Patch (Rust)

100000

80000

60000

40000 —

20000

0-

Fig. 4. ROP gadget count for target code base with a direct function swap in
Rust (DS (Rust)), a patch implemented in Rust (Patch (Rust)), a native patch
in the original language (NP), and the unmodified project (UM).

and serial number data contained within an X509 certificate.
However, it fails to correctly handle any errors that may occur
while parsing the issuer field. This may result in a crash leasing
to a potential denial of service.

SOLDER was able to correctly locate the vulnerable func-
tion, X509_1issuer_and_serial_hash, by getting the
patch file that corresponds to the CVE and finding the function
that was modified. Next, SOLDER takes the whole function and
translates it to Rust code using the tool C2Rust. This produces
a Rust-based patch which may make use of some unsafe code
features in favor of a fully-automated workflow. The Rust
patch is then compiled to LLVM bitcode and tested using
the symbolic executor, KLEE. Next, the name-mangler
pass is run against the patch bitcode to guarantee there
are no symbol naming collisions before linking it with the
whole program OpenSSL bitcode using 11vm-link. Now,

the injector—pass is able to replace the original function
with a Rust version.

Finally, we replay any available tests against the patched
binary. In this case, OpenSSL comes bundled with very
thorough unit tests, which we consider to be sufficient for
positing that our cross-language patch does not introduce any
new bugs. We also test using a proof of concept exploit
against the now patched binary, and verify that it is no longer
exploitable (see Section V-D).

VI. DISCUSSION
A. Patching Techniques

We show that SOLDER is capable of patching applications
by replacing individual functions with updated implementa-
tions. This prototype of SOLDER targets individual functions
primarily due to the typical localized nature of software bugs.
Other potential options could be to keep the patch separate
from the program, and do the patching in-memory, or to
adopt a full binary rewriting approach for patch injection. We
chose to implement an approach where SOLDER can perform
patching and source-level modification operating on LLVM
IR, which we believe provides the most general framework
for extending support to other languages.

B. Generalizability

In order to demonstrate the applicability of SOLDER beyond
C/C++ codebases with patches in Rust, we would need to
extend support by writing LLVM frontends for a target lan-
guage. While we chose Rust to show cross-language support
for patching, SOLDER can be easily adapted to support other
languages: As long as the language has an LLVM frontend
so it can generate bitcode, it will work within our system.
Although not included in our evaluation, we conducted tests
to show that patches could have been written in Haskell or Go
instead of Rust. The only caveat here is that SOLDER requires
its LLVM version be consistent with the LLVM version used
to generate the project bitcode. In our cases, this is not an issue
since our rustc compiler uses LLVM version 12.0, which is
the same as the SOLDER system. When extending support to
Haskell, however, we are more limited with the capabilities
of SOLDER’s LLVM passes as GHC (v8.6.5) only supports
LLVM version 6.0 for its bitcode output.

C. Limitations

When applying SOLDER to binaries without access to
source, we still require knowing the names of the target
functions that we wish to replace. This can be infeasible if
the binary in question has been stripped of debugging symbols.
While we do not have a generalized solution to this application
scenario, we leave this reverse engineering problem to our
future work. Lifting a binary to LLVM IR is also a non-trivial
problem in general, as binary lifting is not decidable and may
lead to inconsistencies in support for analysis tasks [39].

Another limitation of SOLDER is that our patch testing phase
is built on top of KLEE, which means for full granularity
of results, we need LLVM bitcode of any library functions
that we want modeled. In our case, that meant manually
compiling the Rust standard library to LLVM bitcode so we
could symbolically execute the patch using KLEE. This is only
required when we want to support new languages like Rust.
When writing patches in C++, for instance, we simply use
KLEE’s version of uClibc [40]. In the case of more complex
functions, KLEE may need to limit parameters such as loop
unrolling depth. This means that the coverage is not fully
complete. We acknowledge that this means we cannot truly
prove the absence of bugs, but we are instead providing a
level of confidence that we do not introduce any new bugs.

VII. RELATED WORK

a) Retrofitting Legacy Code: Necula et al. [41] presented
a program analysis and transformation system called CCured
to add memory safety guarantees to legacy C programs. It
works by first analyzing the program then attempts to find the
safe portions that already adhere to a strong type system with
the remainder of the program being instrumented with run-
time checks for memory safety. While this provides a good
aid for debugging since it enforces memory safety, it does not
support actual patching as it only provides instrumentation,
and it is only concerned with memory safety enforcement.

Ganapathy et al. [42] presented a mechanism to assist
the process of retrofitting legacy code for authorization pol-
icy enhancement. It consists of two tools, named AID and
ARM. This mechanism combines static analysis and dynamic
analysis to identify security-sensitive operations by analyzing
canonical code-patterns being executed by the server, and
then it instruments these operations and mediates them by
adding calls to a reference monitor which encapsulates an
authorization policy. Although AID and ARM build an au-
tomated system to retrofit legacy code, it does not fix original
vulnerable security-sensitive operations, and it can only work
on C source code.

Parekh et al. [43] proposed a tool to retrofit autonomic
computing onto stovepipe legacy systems, called Kinesthetics
eXtreme (KX). KX is a middleware-like infrastructure that
provides three components, so as to add autonomic services to
legacy systems by keeping monitoring and analyzing systems,
and performing reconfiguration and repair. While it can retrofit
autonomic capability for legacy systems, it needs to add
sufficient sensors around and into systems for monitoring,

and the system also needs to provide enough interfaces to
allow reconfiguration. Compared with our tool, KX focuses
on building an autonomic system that is self-repairing and
self-configuring, while SOLDER targets currently existing vul-
nerable functions.

b) Binary Patching: The challenging task of binary
patching has been extensively studied [15], [24], [44]. For
example, BinSurgeon [45], and AutoFix-E [46] allow users
to write patches using templates or source code annotations.
Duan, et al. [47] proposed OSSPATCHER, which patches vul-
nerable open source mobile applications with source patches.
While this prototype provides a layered pipeline that builds
function-level binary patches from source code, much like
SOLDER; a crucial difference is that it performs the patching
in-memory. This means that instead of actually replacing the
vulnerable code, they are jumping over it at runtime and
running a patched function in place of the original while
leaving the vulnerable function still present in the binary. Hu et
al. [24] proposed BinPatch, which locates a defective function
in a binary and replaces it with a correct version. While similar
to SOLDER, they rely on IDA Pro for finding the function entry
point and then add an extra . text section which connects the
patch to the original code via long jumps.

Other tools work assuming that patches are available pub-
licly or from the analyst [48]-[50]. Binary-rewriting [51]—[54]
and hot-patching at runtime [48], [49] are also viable patching
techniques; however, we focus on precisely targeting individ-
ual functions that can be patched to mitigate a vulnerability
to minimize changes to the application.

c) Code Reuse Attack Mitigations: In a survey of code-
reuse attacks (CRAs) by El-Zoghby and Azer [55], the au-
thors presented different classes of CRA attacks and their
mitigations. Among these defenses were: control-flow integrity
(CFI) [56], memory layout randomization [57], instruction re-
writing [58], and heuristic defenses [59], [60]. These defenses
rely on randomizing memory formats, changing instructions
of the vulnerable application, or using heuristic thresholds to
detect abnormal behavior of software. While these methods
are widely adopted, they are general defenses and do not
precisely target the vulnerable parts of code. Instead, they add
on layers to make exploitation harder while leaving potentially
vulnerable code in place.

Kayaalp et al. [61] proposed a mechanism called branch
regulation which is a hardware-supported protection against
code reuse attacks meant to address the limitations of software
CFI. This mechanism enforces control flow rules in hardware
at the function level to disallow arbitrary control flow transfers.
This system relies on annotating functions via binary rewriting
then checks any control altering instructions to verify that they
target legitimate destinations. While this is a useful alternative
to traditional CFI, it does not allow for the replacement of
potentially buggy functions, instead opting to enforce checks
for arbitrary jumps.

Gionta et al. [62] presented KHide, a system for preventing
code reuse attacks through the use of software diversity on
kernel code at compile time. KHide is meant to prevent

the use of a priori knowledge of gadget locations to launch
attacks. While KHide generates unique kernel images per
compilation, the randomization is based around the insertion
of NOP instructions and function permutation as shown by
Homescu et al. [63] and Fu et al. [64].

Software diversification is a popular moving target defense
strategy to prevent code reuse-style attacks. Jackson et al. [65]
proposed a compiler-based diversification technique which
uses different variation techniques, such as instruction set
and register randomization, to create diversity and generate
a large number of software variants. Similarly, Franz [66]
presented an idea for massive-scale software diversity (MSSD)
by generating a unique version of the software for each client
which downloads it. Cabutto et al. [67] remove chunks of
an executable binary before deployment, and store them on
a remote trusted server. Wu et al. [68] present LLVM-based
binary software randomization, which apply a number of
IR-level transformations (e.g., instruction replacement) prior
to compilation. Collberg et al. [69] use a trusted server to
continuously and automatically generate diverse code variants,
which are then dynamically installed within running clients.
Cui and Stolfo [70] propose a host-based defense mechanism
called Symbiotic Embedded Machines (SEM). They inject
SEMs into host software to provide monitoring and defense
services. SEM is an extra component and is executed along-
side the host software. Pappas et al. [71] propose in-place code
randomization, which breaks the semantics of gadgets used in
return-oriented programming attacks. Although SOLDER is a
tool meant for maintenance and patching of legacy code, it is
still very capable of performing software diversification tasks
such as these as well. By replacing arbitrary functions with
functionally-equivalent counterparts in another language, we
are implicitly introducing diversity into our codebase.

In contrast to existing work, SOLDER can work under
the assumption that a patch is already available or will be
provided by the analyst. Other tools also work by performing
in-memory patching, and do not actively change or remove the
underlying vulnerable code. SOLDER, however, fully replaces
the underlying vulnerable function with a new implementation
and recompiles the binary without the need for annotations or
instrumentation.

VIII. CONCLUSION

In this paper, we described SOLDER, a generalized frame-
work to help and enable application developers and third-party
users to quickly patch public vulnerabilities in applications
without needing to wait for an officially-released patch. As
SOLDER is LLVM-based, it is language agnostic so long as
there is an LLVM frontend to generate bitcode.

By automating program analysis and transformations nec-
essary for swapping in patches, SOLDER provides an impor-
tant foundation for program patching and refactoring. As we
demonstrated, SOLDER provides a significant utility as a code
refactoring tool where users can update legacy codebases with
a newer, safer language. While this would not act as security
patch, it still helps to reduce the overall attack surface through

10

updating the implementation language. To the best of our
knowledge, ours is the first approach to propose function-level
patching of software with cross-language patches.

IX. AVAILABILITY

We publicly released the code of our SOLDER prototype
on GitHub. The code can be accessed at: https://github.com/
solder-project/Solder.

X. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
valuable feedback. This research has been partially-supported
by NSF Grant 2127200.

REFERENCES
[1] S. Frei, Security econometrics: The dynamics of (in) security. ETH
Zurich, 2009, vol. 93.
“Average time to fix critical cybersecurity vulnerabilities is 205 days:
report,” Nov. 2021. [Online]. Available: https://www.zdnet.com/article/
average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days
-report/
T. Llanso and M. McNeil, “Estimating software vulnerability counts in
the context of cyber risk assessments,” in Proceedings of the 51st Hawaii
International Conference on System Sciences, 2018.
“Zero Days, Thousands of Nights,” Nov. 2021. [Online]. Available:
https://www.rand.org/pubs/research_reports/RR1751.html
Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference, 2014, pp. 475-488.
D. Moore, C. Shannon, and K. Clafty, “Code-red: a case study on the
spread and victims of an internet worm,” in Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, 2002, pp. 273-284.
E. Rescorla, “Security holes... who cares?” in USENIX Security Sympo-
sium. Citeseer, 2003, pp. 75-90.
“A Guide to Porting C/C++ to Rust,” Nov. 2021. [Online]. Available:
https://locka99.gitbooks.io/a- guide- to-porting-c-to-rust/content/
M. Miller, “Trends and challenges in the vulnerability mitigation land-
scape,” USENIX Association, 2019.
“An update on Memory Safety in Chrome,” Nov.
2021. [Online]. Available: https://security.googleblog.com/2021/09/
an-update-on-memory-safety-in-chrome.html
L. Clark, “The whole web at maximum fps: How webrender gets rid
of jank,” Oct. 2017. [Online]. Available: https://hacks.mozilla.org/2017/
10/the-whole- web- at-maximum-fps-how- webrender- gets-rid- of- jank/
“A brief history of Rust at Facebook,” Nov. 2021. [Online]. Available:
https://engineering.fb.com/2021/04/29/developer-tools/rust/
F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2201-2215.
H. M. Sneed, “Migration of procedurally oriented cobol programs in
an object-oriented architecture,” in Proceedings Conference on Software
Maintenance 1992. 1EEE Computer Society, 1992, pp. 105-106.
X. Zhang, Y. Zhang, J. Li, Y. Hu, H. Li, and D. Gu, “Embroidery:
Patching vulnerable binary code of fragmentized android devices,” in
2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 1IEEE, 2017, pp. 47-57.
H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security, ser.
CCS ’07. New York, NY, USA: ACM, 2007, pp. 552-561.
T. Fraser, L. Badger, and M. Feldman, “Hardening cots software
with generic software wrappers,” in Proceedings DARPA Information
Survivability Conference and Exposition. DISCEX 00, vol. 2. IEEE,
2000, pp. 323-337.
W. Venema, “Tcp wrapper,” in UNIX Security Symposium III: proceed-
ings: Baltimore, MD, September 14-16, 1992, p. 85.

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

https://github.com/solder-project/Solder
https://github.com/solder-project/Solder
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days\-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days\-report/
https://www.zdnet.com/article/average-time-to-fix-critical-cybersecurity-vulnerabilities-is-205-days\-report/
https://www.rand.org/pubs/research_reports/RR1751.html
https://locka99.gitbooks.io/a-guide-to-porting-c-to-rust/content/
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://security.googleblog.com/2021/09/an-update-on-memory-safety-in-chrome.html
https://hacks.mozilla.org/2017/10/the-whole-web-at-maximum-fps-how-webrender-gets-rid-of-jank/
https://hacks.mozilla.org/2017/10/the-whole-web-at-maximum-fps-how-webrender-gets-rid-of-jank/
https://engineering.fb.com/2021/04/29/developer-tools/rust/

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27

[28]
[29]
(30]

[31]

(32]

[33]
[34]

[35

[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

F. M. Avolio, M. J. Ranum, and M. Glenwood, “A network perimeter
with secure external access,” in Proceedings of the Internet Society
Symposium on Network and Distributed System Security, 1994, pp. 109—
119.

I. Goldberg, D. Wagner, R. Thomas, E. A. Brewer et al., “A secure en-
vironment for untrusted helper applications: Confining the wily hacker,”
in Proceedings of the 1996 USENIX Security Symposium, vol. 19.
USENIX Association Berkeley, CA, 1996.

J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278-
1308, 1975.

V. Ganapathy, T. Jaeger, and S. Jha, “Retrofitting legacy code for
authorization policy enforcement,” in 2006 IEEE Symposium on Security
and Privacy (S&P’06). 1EEE, 2006, pp. 15—pp.

“Did Microsoft Just Manually Patch Their Equation Editor Executable?
Why Yes, Yes They Did.” Nov. 2021. [Online]. Available: https://blog.
Opatch.com/2017/11/did-microsoft- just-manually- patch- their.html

Y. Hu, Y. Zhang, and D. Gu, “Automatically patching vulnerabilities of
binary programs via code transfer from correct versions,” IEEE Access,
vol. 7, pp. 28 170-28 184, 2019.

“Migrate ¢ code to rust,” Nov. 2021. [Online]. Available: https:
//c2rust.com/manual/

C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209-224.

I Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{QSYM}: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 745-761.

“A wrapper script to build whole-program 1lvm bitcode files,” Jan. 2022.
[Online]. Available: https://github.com/travitch/whole-program-1llvm
“Retdec is a retargetable machine-code decompiler based on llvm.”
Nov. 2021. [Online]. Available: https://retdec.com/

“Bear is a tool that generates a compilation database for clang tooling.”
Nov. 2021. [Online]. Available: https://github.com/rizsotto/Bear

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on

Code Generation and Optimization, 2004. CGO 2004. 1EEE, 2004,
pp. 75-86.
“cve-search - a tool to perform local searches for known

vulnerabilities,” Nov. 2021. [Online]. Available: https://github.com/
cve-search/cve-search

“Ropgadget tool,” Jan. 2022. [Online]. Available: https://github.com/
JonathanSalwan/ROPgadget

“Openss] cryptography and ssl/tls toolkit,” Nov. 2021.
Available: https://www.openssl.org/

“Portable openssh,” Nov. 2021. [Online]. Available: https://github.com/
openssh/openssh-portable

“Apache http server,” Nov. 2021. [Online]. Available: https://github.
com/apache/httpd
“Embedded web server,”
//mongoose.ws/

“Eclipse Mosquitto,” Jan. 2020. [Online]. Available: https://mosquitto.
org/

Z. Liu, Y. Yuan, S. Wang, and Y. Bao, “Sok: Demystifying binary
lifters through the lens of downstream applications,” in 2022 2022 IEEE
Symposium on Security and Privacy (SP)(SP). IEEE Computer Society,
Los Alamitos, CA, USA, 2022, pp. 453-472.

“Klee’s version of uclibc,” Jan. 2022. [Online]. Available: https:
//github.com/klee/klee-uclibc

G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477-526, 2005.

V. Ganapathy, “Retrofitting legacy code for authorization policy enforce-
ment,” in In Proceedings of the 2006 IEEE Symposium on Security and
Privacy, 2006.

J. Parekh, G. Kaiser, P. Gross, and G. Valetto, “Retrofitting autonomic
capabilities onto legacy systems,” 2006.

A. Heinricher, R. Williams, A. Klingbeil, and A. Jordan, “Weldr: fusing
binaries for simplified analysis,” in Proceedings of the 10th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis, 2021, pp. 25-30.

[Online].

Nov. 2021. [Online]. Available: https:

11

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

S. E. Friedman and D. J. Musliner, “Automatically repairing stripped
executables with cfg microsurgery,” in 2015 IEEE International Confer-
ence on Self-Adaptive and Self-Organizing Systems Workshops. 1EEE,
2015, pp. 102-107.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in Proceedings
of the 19th international symposium on Software testing and analysis,
2010, pp. 61-72.

R. Duan, A. Bijlani, Y. Ji, O. Alrawi, Y. Xiong, M. Ike, B. Saltafor-
maggio, and W. Lee, “Automating patching of vulnerable open-source
software versions in application binaries.” in NDSS, 2019.

J. Arnold and M. E. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 187-198.

Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1253-1270.

“kpatch,” Oct. 2021. [Online]. Available: https://github.com/dynup/
kpatch

R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen,
P. Grosen, C. Kruegel, and G. Vigna, “Ramblr: Making reassembly great
again.” in NDSS, 2017.

J. Xie, X. Fu, X. Du, B. Luo, and M. Guizani, “Autopatchdroid: A
framework for patching inter-app vulnerabilities in android application,”
in 2017 IEEE International Conference on Communications (ICC).
IEEE, 2017, pp. 1-6.

P-A. Arras, A. Andronidis, L. Pina, K. Mituzas, Q. Shu, D. Grumberg,
and C. Cadar, “Sabre: load-time selective binary rewriting,” International
Journal on Software Tools for Technology Transfer, pp. 1-19, 2022.
G. J. Duck, X. Gao, and A. Roychoudhury, “Binary rewriting without
control flow recovery,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation,
2020, pp. 151-163.

A. M. El-Zoghby and M. A. Azer, “Survey of code reuse attacks
and comparison of mitigation techniques,” in Proceedings of the 2020
9th International Conference on Software and Information Engineering
(ICSIE), 2020, pp. 88-96.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 13, no. 1, pp.
1-40, 2009.

T. PaX, “Pax address space layout randomization (aslr),” http://pax.
grsecurity. net/docs/aslr. txt, 2003.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy,
2012, pp. 601-615.

V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent {ROP}
exploit mitigation using indirect branch tracing,” in 22nd {USENIX}
Security Symposium ({USENIX} Security 13), 2013, pp. 447-462.

Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “Ropecker: A
generic and practical approach for defending against rop attack,” 2014.
M. Kayaalp, M. Ozsoy, N. A. Ghazaleh, and D. Ponomareyv, “Efficiently
securing systems from code reuse attacks,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1144-1156, 2012.

J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-reuse
attacks through disclosure resistant code diversification,” in 2016 IEEE
Conference on Communications and Network Security (CNS). 1EEE,
2016, pp. 189-197.

A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2013, pp. 1-11.

J. Fu, Y. Lin, and X. Zhang, “Code reuse attack mitigation based on
function randomization without symbol table,” in 2016 IEEE Trust-
com/BigDataSE/ISPA. 1EEE, 2016, pp. 394-401.

T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, Compiler-Generated
Software Diversity, 08 2011, pp. 77-98.

M. Franz, “E unibus pluram: Massive-scale software diversity as
a defense mechanism,” in Proceedings of the 2010 New Security
Paradigms Workshop, ser. NSPW ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 7-16. [Online].
Available: https://doi.org/10.1145/1900546.1900550

https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.html
https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.html
https://c2rust.com/manual/
https://c2rust.com/manual/
https://github.com/travitch/whole-program-llvm
https://retdec.com/
https://github.com/rizsotto/Bear
https://github.com/cve-search/cve-search
https://github.com/cve-search/cve-search
https://github.com/JonathanSalwan/ROPgadget
https://github.com/JonathanSalwan/ROPgadget
https://www.openssl.org/
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable
https://github.com/apache/httpd
https://github.com/apache/httpd
https://mongoose.ws/
https://mongoose.ws/
https://mosquitto.org/
https://mosquitto.org/
https://github.com/klee/klee-uclibc
https://github.com/klee/klee-uclibc
https://github.com/dynup/kpatch
https://github.com/dynup/kpatch
https://doi.org/10.1145/1900546.1900550

[67]

[68]

[69]

[70]

[71]

A. Cabutto, P. Falcarin, B. Abrath, B. Coppens, and B. De Sutter,
“Software protection with code mobility,” in Proceedings of the Second
ACM Workshop on Moving Target Defense, ser. MTD ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 95-103.
[Online]. Available: https://doi.org/10.1145/2808475.2808481

B. Wu, Y. Ma, L. Fan, and F. Qian, “Binary software randomization
method based on llvm,” 2018 IEEE International Conference of Safety
Produce Informatization (IICSPI), pp. 808-811, 2018.

C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed
application tamper detection via continuous software updates,” in
Proceedings of the 28th Annual Computer Security Applications
Conference, ser. ACSAC ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 319-328. [Online]. Available:
https://doi.org/10.1145/2420950.2420997

A. Cui and S. Stolfo, Symbiotes and defensive Mutualism: Moving Target
Defense, 08 2011, pp. 99-108.

V. Pappas, M. Polychronakis, and A. Keromytis, “Practical software
diversification using in-place code randomization,” in Moving Target
Defense, 2013.

12

https://doi.org/10.1145/2808475.2808481
https://doi.org/10.1145/2420950.2420997

	Introduction
	Background
	Motivation of Our Work
	Retrofitting Legacy Code
	Binary Patching

	Design Overview
	Objectives and Assumptions
	Patch Generation
	Patch Testing

	Compilation to Bitcode
	Component Linking
	Function Name Mangling

	Patch Injection
	Build Testing

	Implementation
	Evaluation
	Micro-Performance Tests
	Macro-Performance Tests
	Correctness of Patched Binary
	Security Analysis
	Case Studies
	OpenSSL (CVE-2021-23841)

	Discussion
	Patching Techniques
	Generalizability
	Limitations

	Related Work
	Conclusion
	Availability
	Acknowledgements
	References

