
Improving the Efficiency of Dynamic Malware Analysis

Ulrich Bayer
Technical University Vienna

Treitlstrasse 1
1040 Vienna, Austria
+43 1 5880118314

ulli@seclab.tuwien.ac.at

Engin Kirda
Institute Eurecom

2229, Route des Cretes
F-06560 Sophia-Antipolis

+33 4 9300 8247
kirda@eurecom.fr

Christopher Kruegel
University of California

Santa Barbara
CA 93106-5110, USA

+1 (805) 893-6198
chris@cs.ucsb.edu

ABSTRACT
Each day, security companies see themselves confronted with
thousands of new malware programs. To cope with these
large quantities, researchers and practitioners alike have de-
veloped dynamic malware analysis systems. These systems
automatically execute a program in a controlled environ-
ment and produce a report describing the program’s behav-
ior. During the last three years, the number of malware pro-
grams appearing each day has increased by a factor of ten,
and this number is expected to continue to grow. To keep
pace with these developments without causing even more
hardware costs for operating dynamic analysis systems, we
have developed a technique that drastically reduces the over-
all analysis time. Our solution is based on the insight that
the huge number of new malicious files is due to mutations
of only a few malware programs. To save analysis time, we
suggest a technique that avoids performing a full analysis of
the same polymorphic file multiple times. In an experiment
conducted on a set of 10,922 randomly chosen executable
files, our prototype implementation was able to avoid a full
dynamic analysis in 25.25 percent of the cases.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software (e.g., viruses, worms, Trojan horses)

General Terms
Security

Keywords
dynamic analysis, malware analysis

1. INTRODUCTION
The root cause of many criminal activities on the Internet

are malicious programs. Trojans, viruses, bots, etc. give
miscreants a wide range of possibilities for conning unsus-
pecting Internet users. For this reason, we see a huge num-
ber of new malware programs appearing each day. This
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number has grown dramatically over the last few years, and
it will continue to grow in all likelihood. At the time of
writing this paper, one has to assume that around 35,000
new malicious binaries appear each day. Obviously, A/V
companies cannot analyze such a high number of files man-
ually. They need automated tools for verifying whether all of
the suspicious files they receive are, in fact, malicious or not.
Because of the limits of static analysis [25], this prompted re-
searchers and practitioners to develop automated, dynamic
malware analysis systems.

Automated, dynamic malware analysis systems work by
running a binary in a safe environment, monitoring the pro-
gram’s execution and generating an analysis report summa-
rizing the behavior of the program. These analysis reports
typically cover file activities (e.g., what files were created),
Windows registry activities (e.g., what registry values were
set), network activities (e.g., what files were downloaded,
what exploit were sent over the cable), Windows service ac-
tivities (e.g., what services were installed) and process ac-
tivities (e.g., what processes were terminated). Several of
them are publicly available on the Internet (Anubis [1, 12],
CWSandbox [4], Joebox [8], Norman Sandbox [9], Threat-
Expert [10]) but many similar internal systems exist behind
the closed doors of A/V companies. The main thing to note
about dynamic analysis systems is that they are indeed exe-
cuting the binary for a limited amount of time. Since, typi-
cally, malicious programs do not reveal their behavior when
only executed for several seconds, dynamic systems are re-
quired to monitor the binary’s execution for a longer time.
This is why dynamic analysis is resource-intensive in terms
of necessary hardware and time. Moreover, the sheer num-
ber of malware programs appearing each day became high
enough to not only challenge manual analysis but also auto-
mated, dynamic malware analysis. One needs costly server
farms running the dynamic analysis systems to cope with
the ever-increasing load (i.e., amount of binaries to be ana-
lyzed).

In this paper, we present a novel and practical approach
for improving the efficiency of dynamic malware analysis sys-
tems. Our approach is based on the insight that the huge
number of new malicious files appearing each day is due to
mutations of only a few malware programs [18]. More pre-
cisely, malware authors write programs that reproduce poly-
morphically [26] or employ runtime packing algorithms to
create new malware instances that differ on the file level, but
exhibit the same behavior. We propose a system that avoids
analyzing malware binaries that merely constitute slightly
mutated instances of already analyzed polymorphic mal-



ware. To detect polymorphic binaries, we have extended our
dynamic analysis system to check—after executing the mal-
ware program for only a short time—whether our database
of existing analysis reports contains a behaviorally almost
identical (for the time frame in question) analysis report. If
this is the case, we stop the analysis process and instead,
return the existing analysis result.

The contributions of our paper are as follows:

• We propose an approach that drastically reduces the
amount of time required for analyzing a set of mal-
ware programs. To achieve this, we avoid analyzing
the same polymorphic program multiple times. For
detecting that a program is a polymorphic variation of
an already analyzed binary, we dynamically analyze it
for a short period of time. In a next step, we search
the behaviorally nearest program. If such a program is
similar enough (with respect to a specified threshold),
we stop the currently ongoing analysis and instead re-
turn the existing analysis result.

• We present experimental evidence that demonstrates
that our approach is feasible and usable in practice.

• We have designed an algorithm that is efficient and
scalable. We find a program’s behaviorally nearest
neighbor without having to perform n−1 comparisons.

2. BACKGROUND: ANALYSIS TIME
A dynamic malware analysis system faces the problem

that it has to analyze as many suspicious binaries as pos-
sible within a limited time frame and a limited amount of
computing resources available. At the same time, it still has
to provide meaningful analysis reports. Clearly, it is neces-
sary that a dynamic analysis system executes and monitors
a given binary for a reasonable amount of time to determine
the binary’s purpose. Traditional systems either analyze a
given binary until its execution as well as the execution of all
of its children processes ends, or a certain timeout limit has
been reached. This timeout is four minutes long in the case
of the dynamic analysis system that we are modifying. This
means that the execution of a binary under analysis lasts
for a maximum of four minutes. The total analysis time
for a file, however, might be longer because in most cases,
a post-processing step follows the actual execution phase.
Our system, for instance, permits the post-processing step
to run for a maximum of another four minutes. In case
the program exits (or dies because of an error) before the
timeout is reached, the analysis will naturally take less time.
The assumption behind this modus operandi is that the typ-
ical malicious program tries to perform its malicious actions
as soon as possible. However, we want to point out that
this assumption is not always true and that a longer anal-
ysis might be desirable in some situations . For example, a
binary could try to sleep for several minutes before it be-
gins its (malicious) work. To allow for a longer analysis (in
certain cases or in general), even more computing resources
are required. In the following paragraphs, we will describe a
technique that reduces the amount of required analysis time.
Thus, this technique helps a dynamic analysis system both
to analyze more programs in a given period and to analyze
programs for a longer amount of time. More formally, this

relationship can be described as:

OverallAnalysisT ime = (|B| ·
X

b∈B

ta(b))/I

with B being our set of binaries, ta the analysis time for a
single binary and I the number of instances of the analysis
system that are running in parallel.

More precisely, the analysis time ta(b) of a binary b is
composed of a setup time ts(b) and a post-processing time
tp(b) in addition to the actual time te(b) used for executing
the binary b in a secure environment. That is:

ta(b) = ts(b) + te(b) + tp(b)

During the setup time, we prepare the analysis environment—
possibly by loading a virtual machine and transferring the
program into it. In the final post-processing step, we ap-
ply all kinds of offline analysis methods to the information
gained during the execution of the binary. Tasks performed
during the post-processing step range from archiving the
analysis result and updating databases to running scripts
for analyzing a network traffic dump file.

Note that analysis systems usually treat binaries sched-
uled for analysis as a mathematical set consisting of unique
files. That is, to save analysis time, one avoids analyzing
the same file multiple times. Practically, this technique is
implemented by computing a hash value for the file before
the analysis starts. If a matching analysis result already ex-
ists in the report repository, the analysis system can simply
return the already existing result to the user.

3. REDUCING THE OVERALL ANALYSIS
TIME

Our solution is based on the insight that the large quan-
tity of new malicious files appearing each day is due to mu-
tations of only a few malware programs (e.g., polymorphic
reproduction or use of runtime packing algorithms with a
random crypt seed resulting in a slightly changed binary).
Indeed, we made the experience that, in our system, anal-
ysis reports are in many cases almost identical suggesting
that we’ve analyzed a polymorphic malware instance sev-
eral times. We propose a system that makes use of the fact
that we can avoid analyzing the large percentage of incoming
malware binaries that merely constitute slightly mutated in-
stances of already analyzed polymorphic malware binaries.
This system is the logical extension of the hash-based tech-
nique that saves analysis time by not analyzing the same file
(identified via its hash value) twice.

To this end, our system checks after running a binary b
for only a short amount of time that we call the checkpoint
time Tc whether the behavior seen in this short time is al-
most identical to behavior seen in a previous analysis. If
this is the case, we stop analyzing the binary b. We return
the analysis result of the program that we found to behave
almost identically instead. This means that we are able to
deliver a full analysis report which covers all of a program’s
behavior as observed in time te(b) for a binary b that we
effectively analyzed only for a much shorter period Tc . Of
course, this scheme only makes sense if Tc is a lot smaller
than te(b): Tc << te(b). We will discuss the selection of Tc

in the evaluation section.
Thus, the analysis time of a pre-empted binary b is given

by tpre−empted(b) = ts(b) + Tc. Since in the case of pre-



empted binaries we return an already existing analysis result
there is no need for a post-processing phase. The time saved
by pre-empting a file b is consequently ta(b)−tpre−empted(b).

3.1 Behavioral Profiles
To determine whether a program’s behavior after time Tc

corresponds to one that we have already analyzed, we lever-
age a presentation of a program’s behavior that we call be-
havioral profile. We represent a binary’s b behavioral profile
as bp(b) in this paper. Behavioral profiles were introduced
in [13]. A behavioral profile aims to capture a program’s
behavior at an higher level of abstraction than a raw system
call trace while correctly retaining a program’s behavioral
semantics. Among other things, a behavioral profile relies
on information gained from the data tainting system of a dy-
namic analysis program . This is used, for example, in order
to determine whether execution artifacts, such as filenames,
registry-key names, etc. depend on randomness and thus
change with every execution of the program. Clearly, it is of
utter importance to detect randomness when comparing two
behavioral profiles. It is known, for example, that the poly-
morphic Allaple worm scans a randomly chosen IP sub-net
for potential victims. Even in the simplistic case of compar-
ing two different executions of the same binary we have to
detect that the target IP is randomly chosen for achieving
a high similarity score. We refer the reader to [13] for the
details of behavioral profiles. For this paper, it is impor-
tant to know that a behavioral profile is essentially a set (in
the mathematical sense) of features where a feature could
be a string of the form file|C:\Windows\test.exe|create
to reflect the event that a file named C:\Windows\test.exe
was created.

For this paper, it proved useful to extend behavioral pro-
files with timing information. More concretely, we assigned
a timestamp value to each feature representing the feature’s
first occurrence in an execution trace. This permits us to
order features based on their first occurrence. Moreover,
it allows for more advanced comparison techniques between
behavioral profiles. Please note that a behavioral profile
still remains a set of string features. If, for instance, a pro-
gram creates and deletes a certain file several times, the
behavioral profile contains only a single feature represent-
ing the file’s creation. Its timestamp would equal the time
when the program created the file the very first time. This
timestamp value specifies the offset to a well defined start-
ing time. We decided to use the time when a program’s very
first user-mode instruction is being executed as the starting
time. This approach is robust against varying durations of
the setup phase where among other things we have to load
the snapshot and copy the program into the virtual environ-
ment.

3.2 Comparison
We consider a program b to be a polymorphic variant of

another program a if the distance between their behavioral
profiles at time Tc is below a certain distance threshold d.
Formally, we demand that dist(bp(a), bp(b)) < d. As a dis-
tance function we employ the Jaccard distance [21], defined
as

J(a, b) = 1 − |a ∩ b|/|a ∪ b|

We define two programs a and b as being behaviorally iden-
tical if J(bp(a), bp(b)) < d is true. In the evaluation section,

we are going to discuss the selection process for the distance
threshold parameter d. In the ideal case, we would expect
to have a distance of 0 between the profiles of two behav-
iorally identical binaries. Practically, our experiments show
that this distance is rarely exactly zero. The reason for that
is that our behavioral profile cannot capture all randomized
artifacts. Another reason is that frequently the analyzed
program is not able to execute the exact same number of
system calls during different analysis runs. This is due to
OS scheduling decisions, differing server workloads, network
connection latencies and similarities.

Extended Jaccard Distance. Although we perform our
analysis runs each time in exactly the same configuration, we
cannot prevent the existence of a small number of differences
in behavioral profiles due to timing issues. Consider, for
example, that we have chosen a checkpoint time Tc of 45
seconds and that we have two analysis runs of the same file.
Let us furthermore assume that this file is programmed to
sleep for 45 seconds and to proceed by creating twelve files.
Clearly, it is easily possible that in one execution all twelve
files have been created at time Tc while in the other one
no files at all have been created. To alleviate this problem,
we introduce an extended Jaccard distance Je that is more
robust against the described timing issues.

Without loss of generality we assume that for two behav-
iorally identical programs a, b the program a has already
advanced further in its execution at a certain point in time.
Thus, its behavioral profile contains more features. At the
same time, b’s behavioral profile bp(b) is an approximate
subset of bp(a) (since we are assuming that b exhibits the
same behavior). We define an approximate subset as a rela-
tionship where a large percentage p of the features are the
same: |bp(b) ∩ bp(a)|/|bp(b)| >= p. For our experiments,
we have—based on our experience with the reference set—
chosen a value of 0.9 for p. We will demonstrate that this
selection of p is reasonable and yields good results. This
model motivates the following algorithm for computing a
more timing resilient distance value:

1. if bp(b) is not an approximate subset of bp(a) we stop
and return the normal Jaccard distance J(bp(a), bp(b))

2. otherwise we select the feature
fhighest ∈ bp(a) ∩ bp(b) with the highest timestamp

3. we compute a bpnormalized(a) by removing all features
from bp(a) with a timestamp higher than timestamp(f)

4. return J(bpnormalized(a), bp(b)) as a result

In our experiments, we compare the results achieved by
employing either one of them. The computation of the ex-
tended Jaccard distance is more costly than the simple Jac-
card distance. Additionally, as we will see in the next sec-
tion, it lacks some of the properties that make the Jaccard
distance so attractive. In particular, techniques exist that
allow the efficient search for a behavioral profile’s nearest
neighbor when the Jaccard distance is used as a distance
metric. This is why we use the Jaccard distance as our pri-
mary distance metric and resort to the extended Jaccard
distance only in a second step when it is computationally
more feasible.



Figure 1: Overview of our approach for saving analysis time

3.3 Efficient Nearest Neighbor Search
As explained in the preceding paragraphs, we represent a

program’s behavior in the form of a behavioral profile and
use the Jaccard distance for determining the dissimilarity
between two behavioral profiles. In this subsection, we will
describe how to efficiently find for a program b at time Tc, an
almost identical program if such a program exists (i.e., was
already analyzed). The naive solution, a linear search, would
be to compare bp(b) with all existing behavioral profiles.
This solution has a runtime complexity of O(n ∗ d) where n
is the number of behavioral profiles in our database and d is
the number of features present in the union of all behavioral
profiles. In addition to the runtime costs, we would need to
keep all behavioral profiles in main memory to allow for a
efficient comparison. This is clearly not very scalable.

A more efficient technique for finding the nearest behav-
ioral profile is Locality Sensitive Hashing (LSH) [20]. LSH
provides an efficient (sublinear) solution to the approximate
nearest neighbor problem (ǫ-NNS). LSH was already suc-
cessfully leveraged for developing a scalable, malware clus-
tering system [13]. In the following, we will shortly describe
LSH to the extent necessary for understanding this paper.
The idea behind LSH is to map similar points (in our case
behavioral profiles) with high probability to the same hash
value. We achieve this by employing a family H of hash
functions such that Pr[h(a) = h(b)] = similarity(a, b), for
a, b points in our feature space, and h chosen uniformly at
random from H . Informally, this means that the more sim-
ilar two behavioral profiles are, the higher the probability
that the hash function will map them to the same value.
By defining the locality sensitive hash of a as lsh(a) =
h1(a), .., hk(a), with k hash functions chosen independently
and uniformly at random from H , we then have Pr[lsh(a) =
lsh(b)] = similarity(a, b)k.

In the case of sets for which the Jaccard index is used as
similarity measure, a family of hash functions H with the
desired property has been introduced in [14]. A hash in H
imposes a random order on the set of all features. The hash
value for a feature set a is then determined by the index of
the smallest element of a according to this order. Since it is
inefficient to generate truly random permutations, random
linear functions in the form h(x) = c1x+c2 mod P are used
instead [19], with P a prime number larger than the total
number of features in F .

Given the distance threshold d, we choose a suitable num-
ber k of hash functions in each LS hash, and moreover the
number of iterations l. Thus, the parameters l and k permit
us to control the LS hashing such that it yields good results
with respect to our distance threshold. Formally, the col-
lision probability of two behavioral profiles is computed as

Pr[collision(a, b)] = 1 − (1 − (sim(a, b)k))l

3.4 The Analysis Process
In this subsection, we explain the steps necessary to inte-

grate our approach into the traditional analysis work flow.
First, we we assume that the results of completed analysis
runs are being stored. Second, the LSH configuration con-
sisting of l ∗ k hash functions h1,1, ..., hk,l has to be selected
once and stored persistently for later use. Third, LS hashes
for completed analysis runs need to be stored persistently in
a hash database.

Figure 1 gives an overview of the entire analysis process.
After analyzing a binary b for Tc seconds, we create a be-
havioral profile bp(b). This profile captures the program’s
behavior until time Tc. In a next step, we employ LS hash-
ing to find the set of candidate near behavioral profiles N .
To this end, we first initialize the set N to the empty set.
Then, this search is performed in l iterations with each iter-
ation consisting of the following steps:

1. We load the k hash functions h1, ..., hk for iteration l
from our persistent storage

2. We compute the LS hash for binary b: lsh(b) = h1(b), ..., hk(b)

3. We check whether lsh(b) exists in our database of hashes
and add all behavioral profiles with identical LS hashes
to the set of candidate neighbors N

Since the set of candidate neighbors N might contain false
positives due to the probabilistic nature of LS hashing, we
compute all the distances J(b, n) for all n ∈ N . In the eval-
uation section, we will demonstrate that results of replacing
J with Je for this step. We keep the nearest behavioral pro-
file n if one exists with a distance smaller than our chosen
threshold. In case we found a behaviorally identical profile,
we stop the currently ongoing analysis and return the anal-
ysis report of profile n. Otherwise, we store the l LS hashes
that we calculated before in our hash database and let the
dynamic analysis continue.

4. EVALUATION
To verify the correctness and efficiency of our approach,

we have implemented a prototype system. We will first
shortly describe our prototype implementation and then dis-
cuss the experiments that we conducted, and the results ob-
tained.

4.1 Prototype Implementation
For testing our approach, we modified an existing dynamic

analysis system [12]. In the following, we summarize the
most important changes.
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Figure 2: False Positives

On-the-fly generation of the behavioral profile. First,
we had to modify the analysis system so that behavioral pro-
files are built incrementally while the analysis of a program
progresses. Each invocation or return of a system call trig-
gers the update of our behavioral profile. Consequently, it is
possible to create a behavioral profile at each point during
the analysis of a program. Special handling was necessary
to account for network actions. Since the existing network
analysis examines the raw network traces, we have to exe-
cute this network analysis script (which in turn parses the
network traffic dump file) each time a behavioral profile is
generated.

Timestamps. The generation of behavioral profiles was
modified to include a timestamp for each feature. The times-
tamp indicates the time of a feature’s first occurrence.

LSH. For performance reasons, the LSH computation code
is written in C++. To interface this code with the rest
of the analysis scripts, which are written in Python, we
wrapped the C++ code in a Python module (with the help
of Boost.Python [3]). The LS hashes for a profile are stored
in a relational DBMS (MySQL). Searching for LS hashes and
adding new hashes is performed via regular SQL queries.

Mapping feature strings to integer values. It would
be inefficient to perform all of our distance and LSH compu-
tations directly with behavioral profiles in the form of sets
of (feature) strings. Instead, we map each feature string to a
unique integer value with the help of a table in our relational
DBMS. Currently, we store feature ids as 32-bit numbers.

LSH configuration. We decided to store the LSH con-
figuration in the relational DB as well. This permits each
analysis run to rebuild the identical k ∗ l hash functions
h1,1, ..., hk,l. The LSH configuration consists of l∗k (pseudo-
) random numbers c1, c2 and the prime number P . It is nec-
essary to select a prime number P that is higher than the
number of all features. Since we cannot predict how many
features we will have in the future (each analysis adds new
features) we chose the largest 32 bit prime number for P .

4.2 Experiment with a Reference Set
To assess the effects of the checkpoint time parameter Tc

and the distance threshold d on our algorithm, we chose
to compare the outcome of our algorithm under different
configurations with a reference set.
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Figure 3: False Negatives

Reference Set. In a first step, we manually compiled a set
of 20 polymorphic programs and 22 non-polymorphic pro-
grams, 42 files in total, that should serve as our reference set.
More precisely, we included four different types of malware
which are known to be polymorphic and which appeared in
the wild during August 2009:

• Virut: Virut is a polymorphic file infector [7]. It infects
files with an .EXE or .SCR extension by appending a
slightly modified copy of itself to the file. We were
able to manually verify that the five Virut files in our
set were indeed all infections of the same original exe-
cutable file. That is, the five Virut files contained the
same host file and only differed in their last section
where the actual (polymorphic) virus code resides.

• Allaple.1: Allaple [5] is a polymorphic worm that spreads
by exploiting a number of vulnerabilities. Whenever
the worm propagates it newly encrypts its code. The
result is a copy of the virus that differs at the byte-level
from its source.

• Allaple.2: This is another variant of Allaple.

• Trojan-PWS.Win32.LdPinch: LdPinch [6] is a Trojan
that is designed for stealing passwords and mailing
them back to the virus author. Unlike viruses and
worms Trojans do not replicate. Consequently, some-
one must have created the different LdPinch files in our
set. We discovered that a toolkit for creating Pinch
Trojans exists [2] that allows for the easy creation of
new Pinch Trojans. We suspect that this or a simi-
lar tool was used by the virus author(s) for the semi-
automatic creation of new LdPinch files. The toolkit
was first detected in the wild in 2008 but newly created
variants continue to appear.

Each of the four polymorphic malware programs in the
preceding list is represented by five unique binaries in our
reference set.

Selecting the checkpoint time and the distance thresh-
old. The time parameter Tc determines after how many
seconds we search for the nearest behavioral profile. The
distance threshold d specifies the maximum distance that
two behavioral profiles are allowed to have in order to be



considered as behaviorally identical. To understand the ef-
fects of these parameters on our results, we conducted the
following experiment.

For all parameters combinations Tc ∈ {1, 2, ..., 240}, d ∈
{0.05, 0.1, 0.15, ..., 0.4, 0.5, ..., 1.0} we calculated a full dis-
tance matrix based on the Jaccard distance. After choosing
the nearest profile for each file, we decided in accordance
with the current threshold d whether the analysis of this
file is pre-empted or not. Each time, we compared the out-
come with the reference set. We measure the success of our
algorithm by calculating the number of the false positives
(i.e., the number of programs that were wrongly determined
to be behaviorally identical) and the number of false nega-
tives (i.e., the number of programs that we did not correctly
identify as being behaviorally identical).

In this experiment, we are mainly interested in the dis-
tances between behavioral profiles at specific execution times.
This is why, we we do not assume any specific submission
order and calculate all possible distances.

Figure 2 shows the percentage of false positives in rela-
tion to the checkpoint time. The figure contains five dif-
ferent lines showing the false positive rate for five different
distance thresholds. Naturally, a higher distance threshold
leads to higher false positive rate. In the extreme case of a
distance threshold of d = 1.00, all 22 non-polymorphic bi-
naries are wrongly found to be behaviorally identical with
one of the four polymorphic malware types. On the other
hand, a value of d = 1.00 leads to 0 percent of false nega-
tives. Furthermore, we can see that the percentage of false
positives diminishes over time. This makes perfectly sense
because the longer we execute a program the more char-
acteristic actions we are going to include in its behavioral
profile.

We show the false negative rate in Figure 3. In contrast
to the false positives, the false negative rate improves when
the distance threshold increases. A threshold of d = 0.30
paired with a checkpoint time greater than approximately
100 seconds is sufficient to not miss any polymorphic binary.
That is, we recognize all polymorphic programs correctly as
being polymorphic. In the extreme case of d = 0.00, none
of our 20 polymorphic programs is correctly recognized as
being polymorphic. Moreover, it is interesting to see that a
distance threshold of 0.10 still results in quite a high number
of false negatives. This indicates that our behavioral profiles
still contain more execution-specific artifacts than we desire.
It is noteworthy that the false negative rate fluctuates a
lot at different checkpoint times in case of tight thresholds,
such as 0.10 or 0.15. This is because a longer analysis time
increases the number of actions and the number of execution
artifacts in a behavioral profile. As a consequence, a longer
analysis time can make behavioral profiles drift more apart
than would be appropriate.

4.3 Real-World Experiments
After completing our experiments with the reference set,

we started to test our algorithm in a real-world setting. To
this end, we installed and operated our prototype system in-
side our dynamic analysis platform for several days. In this
period, the system has analyzed a set B of 10,922 unique ex-
ecutable files. For each analysis, we created and stored a be-
havioral profile including timestamps for all features. In this
experiment, we did not stop the analysis of any programs

prematurely. Instead, we decided to allow all programs to
continue running until the normal timeout is reached. This
puts us into a position to review the full behavior of oth-
erwise pre-empted programs and to reason whether our al-
gorithm’s decision to prematurely end an analysis run is
justified.

While it is straightforward to calculate the total amount
of time saved by running our algorithm in this real-world
setting, it is inherently more difficult to estimate the num-
ber of false positives and false negatives in these results. We
developed the following strategy to evaluate how reliable our
algorithm is in its decisions to prematurely stop an analy-
sis : For all the programs bi ∈ B, that, according to our
algorithm, have a behaviorally identical program si ∈ B at
checkpoint time TC , we compute the pair-wise Jaccard dis-
tances at the time of the traditional analysis end. In other
words, we are evaluating how much the behavior of two pro-
grams a and s that were found to be behaviorally identical
at an earlier time Tc differs after the normal timeout of four
minutes. This distance calculation permits us to quantify to
what extent our analysis result would have differed in case
our algorithm was actively deployed. We are not claiming
that the current analysis results, which are delivered after 4
to 8 minutes, are always correct. We are only examining the
question to what degree our algorithm, while saving time,
returns possibly worse analysis results. This strategy does
not allow us to directly measure the false positive rate, but
it is suited to give us an estimate of the false positive rate.

Although the size of the real-world set makes an exhaus-
tive evaluation of all possible parameters infeasible, we were
able to try out several interesting ones thanks to the fact that
we had the full behavioral profile including timestamps avail-
able. We show the results of performing five runs of our al-
gorithm on set B with varying parameters for the checkpoint
time Tc and the distance threshold d in Table 1. Our initial
parameter selection was guided by our experience gained
while performing tests on the reference set. Additionally,
we were examining the effects of using the extended Jaccard
distance.

Configuration Pre-empted files Time saved/ Total time

pre-emption saved

45s, 0.12 3,087 (28.26%) 265s 227.2 hours
60s, 0.12 2,747 (25.15%) 250s 190.8 hours
60s, 0.12, Je 3,659 (33.5%) 250s 284.1 hours
60s, 0.08 1,653 (15.13%) 250s 114.8 hours
60s, 0.08, Je 2,539 (23.24%) 250s 176.2 hours

Table 1: Results of testing our approach in different
configurations on a set of 10,922 binaries

When testing a new configuration, of course, no LS hashes
exist in the beginning. Clearly, for the very first program,
we cannot possibly find a nearest neighbor. During each
run of our algorithm, we performed the steps detailed in
section 3.4. This means that we iterated (in the same order
that the files were originally analyzed) over the set of files in
B: For each b ∈ B, we searched the nearest behavioral pro-
file si ∈ B. This search process consists of the LS hashing
step that efficiently calculates a set of candidate near profiles
and a subsequent traditional comparison with all the candi-
date near profiles to eliminate false positives. The number
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of traditional comparisons averaged to 1.2820 during all our
runs. For practical reasons, we conducted all our algorithm
runs with a value of l = 140 and k = 25. We selected
these values to get good results for distances of 0.15 and
smaller. More precisely, these parameters cause behavioral
profiles with a distance of 0.15 to collide with a probability
of 0.912. The chosen value for k and l allowed us to test our
algorithm reliably with all threshold distances smaller than
0.15. For thresholds < 0.15 we simply adapted our tradi-
tional comparison function, which checks all candidate near
profiles emitted by the LSH step, accordingly. Furthermore,
for the runs in Table 1 having Je listed in their configura-
tion, we performed the false positive removal by computing
the extended Jaccard distance.

As stated before, for all binaries that have a behaviorally
identical program at time Tc, we recomputed the distance at
time te. Figure 4 shows the distribution of these distances
as a CDF. The x-axis of the diagram details the percentage
of behaviorally identical programs while the y-axis specifies
the distance between two programs at time te (i.e., after four
minutes). One can see that in most parameter configurations
around 90% of all pre-empted executables have a distance <
0.3 after executing for four minutes. We saw in Figure 3 that
executions of the same malware program can easily have
a distance of 0.3. In fact, a threshold below 0.3 leads to
a number of false positives for checkpoint times below 100
seconds. At the same time, a distance threshold of 0.3 causes
no false positives, as can be seen in Figure 2. This is why
these results are absolutely encouraging. They demonstrate
that our algorithm works well with only a small number of
serious distance deviations.

Looking at Figure 4 makes it clear that we get better re-
sults in the runs where we chose a checkpoint time of 60
seconds as opposed to 45 seconds. Moreover, we see that
the extended Jaccard distance does not perform necessarily
better. It is also quite intuitive that demanding a smaller
distance threshold at time Tc results in smaller distances at
time te. At the same time, the effectiveness (i.e., number
of pre-empted files) of our algorithm decreases with tighter
distance thresholds as can be seen in Table 1. Thus, there
is no single correct value for the checkpoint time and the
distance threshold. When selecting these parameters, one
has to take the requirements of the application into consid-
eration. For our purposes, we believe that a checkpoint time

of 60 seconds and and a distance threshold of 0.12 strike a
good balance between reliability of the analysis results and
efficiency of the algorithm.

To calculate the time saved by pre-empting an analy-
sis run, we make use of average values for ta(b) and for
tpre−empted(b). In case of our dynamic analysis system, the
average analysis time for a program including the setup-
time and post-processing amounts to 334 seconds. For pre-
empted analysis runs, we have to add on average 24 seconds
to the checkpoint time to account for the setup-time. As a
consequence, we save on average 265 seconds with a check-
point time of 45 seconds and 250 seconds when the check-
point time is 60 seconds. A configuration of Tc = 60s and
d = 0.12 saves in total 190.8 hours of analysis time. In this
time, we can perform 2,056 additional, full analysis runs on
average.

5. LIMITATIONS
It is obviously possible that a malicious adversary crafts

two files that appear to be behaviorally identical at check-
point time TC but change their behavior afterward. In such
a case, our algorithm would wrongly pre-empt the analysis of
one file. There is no easy defense against this kind of attack
since this is an intrinsic problem of dynamic analysis sys-
tems. A dynamic analysis system is evadable by programs
that do not reveal their true behavior during the short pe-
riod where their behavior is monitored. While it is possible
to defend against specific attacks (such as sleep operations),
it is more difficult to find solutions in the general case.

6. RELATED WORK
Dynamic analysis system are not the only means to an-

alyze malicious binaries. System based on static analysis
(e.g., [15, 16, 17, 22]) also exist. They are less popular
though because malware is usually well-protected against
static techniques. In particular, today’s malware programs
leverage code obfuscation [24], code encryption and runtime
packing [18] to make dis-assembly difficult. Since all static
techniques that are more sophisticated rely on disassembling
the binary in a first step these techniques suffer from the fact
that they cannot analyze the majority of malicious binaries.
The biggest advantage of static techniques is their potential
to reason about all possible execution paths of a (malware)
program while dynamic analysis is limited to a single execu-
tion path. In theory, also static techniques could profit from
the fact that a large portion of today’s malicious program
landscape is composed of file-level variations of a small num-
ber of malware programs. Analogous to our technique for
dynamic analysis systems an expensive static analysis run
could be avoided if it’s possible to prematurely detect that
an analysis of this malware program already exists.

Another related technique is behavior-based malware clus-
tering [11, 13, 23] . Both clustering systems, as well, as our
algorithm for detecting already analyzed programs (albeit
different on the file level) have to compare different execu-
tion traces and define a notion of similarity. While cluster-
ing aims to find groups of behaviorally similar programs we
are only interested in finding a program’s nearest neighbor.
Finding a program’s nearest neighbor is a step necessary
to reach our goal of not analyzing binaries that have al-
ready been analyzed. We are performing this search based
on monitoring the behavior for a more limited amount of



time. Clustering systems, on the other hand, work of course
on the whole execution trace of a binary.

7. CONCLUSIONS
In this paper, we propose a novel approach for making

the dynamic analysis of malicious programs more efficient.
It drastically reduces the amount of time necessary for an-
alyzing a set of malicious program. Our approach makes
use of the fact that the huge number of new malware pro-
grams appearing each day is due to mutations of only a few
malware programs. Therefore, we suggest a technique that
avoids fully analyzing a program again if we have already an-
alyzed this program (albeit different on the file level) once.
We detect that a program is a polymorphic variation of an
already analyzed binary by executing it for a short period of
time. In a next step, we check whether the behavior seen in
this period is almost identical to an already analyzed binary.
If this is the case, we stop the currently ongoing analysis and
instead return the existing analysis result.

We have empirically demonstrated that this technique works
well in practice and that it is efficient. By leveraging local-
ity sensitive hashing we avoid performing n−1 comparisons
for determining whether an almost identical program has al-
ready been analyzed. Moreover, our experiments show that
for a set of 10,922 randomly chosen executable files, we were
able to avoid the full analysis of 2,747 files (25.25%). This
equals 190.8 hours of saved analysis time. In the future, we
plan to actively use this technique in our dynamic analy-
sis system because it helps us to analyze more of today’s
malicious programs.
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