
Gudifu: Guided Differential Fuzzing for
HTTP Request Parsing Discrepancies

Bahruz Jabiyev
Dartmouth College
Hanover, NH, USA

Anthony Gavazzi
Northeastern University

Boston, MA, USA

Kaan Onarlioglu
Akamai Technologies
Cambridge, MA, USA

Engin Kirda
Northeastern University

Boston, MA, USA

ABSTRACT

Modern web applications involve multiple HTTP processors on the
traffic path, each acting as a reverse proxy and processing client
requests. Even when such proxies are secure in isolation, when
combined into complex systems, minor HTTP parsing discrepancies
between them can lead to various severe attacks such as cache
poisoning and HTTP request smuggling attacks.

We propose Gudifu, a new approach that improves the state-of-
the-art HTTP differential fuzzing approaches in two main ways: 1)
taking a graybox fuzzing approach to probe the parsing behavior
of HTTP proxies and 2) using a new algorithm which is capable
of searching for discrepancies in the entire HTTP request. These
improvements lead to the discovery of significantly more parsing
discrepancies and discrepancy-based attack vectors which were
previously unknown.

CCS CONCEPTS

• Security and privacy→Web application security.

KEYWORDS

HTTP Parsing Discrepancies, Guided Differential Fuzzing, HTTP
Server Chain Attacks

ACM Reference Format:

Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda. 2024.
Gudifu: Guided Differential Fuzzing for HTTP Request Parsing Discrepan-
cies. In The 27th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID 2024), September 30–October 02, 2024, Padua, Italy. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3678890.3678904

1 INTRODUCTION

The classic client-server model no longer accurately represents
practical web application deployments. Today, origin servers are
supported by many intermediate services such as web caches, load
balancers, security products, and API gateways, which all act as
reverse proxies and process traffic at the application layer. In other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RAID 2024, September 30–October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678904

words, a single request generated by a user agent is often parsed,
processed, and transformed by a plethora of HTTP proxies.

This design is key to highly distributed and scalable Internet
infrastructures. However, it also adds complexity, and complex
systems are inherently hazardous [10]. Although this is a well-
understood concern in the safety engineering literature [30], the
security community is only recently flooded with new classes of at-
tacks exacerbated by this complexity. These attacks are not caused
by faulty components in the system, but they arise due to hazardous
interactions between multiple components that may otherwise per-
form to specification.

In particular, discrepancies in how different HTTP proxies on the
traffic path process a given request are shown to be a major factor,
leading to a steady stream of novel web cache poisoning and request
smuggling attacks (e.g., [8, 12, 25, 28, 29]). We collectively refer to
these as discrepancy attacks. Discrepancy attacks are practical, and
were weaponized for exploiting high-profile targets; e.g., to hijack
HTTP requests on Slack and steal cookies [11], to poison PayPal’s
web cache and serve malicious JavaScript [26], and to steal HTTP
responses destined for arbitrary users of Atlassian Jira [27].

While academic research into this domain is sparse, two recent
works explored methods for identifying novel discrepancy attack
vectors through differential analysis of HTTP processors [24, 38].
Both works involve a similar fuzzing approach: 1) fuzzing multiple
proxies with mutated HTTP requests, 2) capturing the requests
processed and forwarded by each proxy, and 3) comparing the
forwarded requests to identify discrepancies.

The fuzzingmethods of past research are performed in a blackbox
manner, relying on static grammars for input generation. In other
words, they have no visibility into how each input performs, and
therefore, their ability to exercise the target HTTP processors and
induce unusual behavior is fundamentally limited.

In addition, past works tailor their discrepancy detection strate-
gies to a narrowly defined set of attack types, targeting specific
parts of HTTP requests. For example, as an indicator of HTTP
request smuggling vulnerabilities, prior work only searches the
request body in the forwarded requests for discrepancies. That
leads to missing out on opportunities to detect new attack vectors
which may arise from discrepancies in request components that
have received less attention from the security community.

In light of these limitations of prior work, we formulate the
following research questions:

235

https://doi.org/10.1145/3678890.3678904
https://doi.org/10.1145/3678890.3678904
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678890.3678904&domain=pdf&date_stamp=2024-09-30

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

(Q1) Does a guided, graybox fuzzing approach enable more effec-
tive discovery of HTTP parsing discrepancies compared to a
blackbox approach?

(Q2) Can we search for discrepancies holistically, regardless of
what part of the request they arise at?

(Q3) Does a graybox and holistic approach help identify novel
and exploitable discrepancy attacks that impact ubiquitous
proxy technologies?

To investigate these questions, we propose Gudifu, a graybox
differential fuzzing approach, which uses a code coverage metric
to guide input selection and mutation. We present an implemen-
tation of Gudifu, and use it to test for novel discrepancy attacks
between six popular reverse proxies: Apache httpd, NGINX, H2O,
ATS, HAProxy, and Envoy.

We empirically evaluate our approach against the aforemen-
tioned T-Reqs fuzzer of prior work [24], and show that Gudifu
finds significantly more discrepancies in our experiment setup.

Finally, we craft practical attacks based on Gudifu’s novel find-
ings. We demonstrate that these discrepancies have real-world
impact via access control bypasses, cache poisoning and HTTP
request smuggling.

We summarize again the contributions of our work below.

• We developGudifu for graybox differential fuzzing of HTTP
proxies.

• We propose a novel holistic search method for discrepancies
in requests, which identifies attack vectors missed by prior
work.

• We demonstrate that our novel approach is more effective
in finding discrepancies than existing blackbox approaches.

• We demonstrate with concrete exploits that discrepancy at-
tacks have dire security implications.

Availability. Gudifu is open source. The code can be viewed at
https://github.com/bahruzjabiyev/gudifu-fuzzer.

Coordinated Disclosure.We notified the tested proxy vendors
by providing them a copy of the paper. The discussion of vendor
responses is at the end of the paper.

2 BACKGROUND AND RELATEDWORK

Here, we give an overview of the relevant fuzzing techniques and
the past research on HTTP discrepancy attacks – attacks which
exploit the discrepancies in servers’ parsing behavior.

Fuzzing is the process of generating numerous inputs with var-
ious forms and contents in order to exercise as much of a target
program as possible. Fuzzing techniques are typically categorized
as either blackbox or graybox. In blackbox fuzzing, inputs are gen-
erated independent from their impact on the target program, and
are often generated from a static corpus or grammar. In graybox
fuzzing, each executed input is assigned a success value, where the
higher the success value of an input is, the higher the chance that
input has to be used again for fuzzing. By giving priority to suc-
cessful inputs, graybox fuzzing guides the fuzzing process toward
more successes. The success metric can be, for example, the code
coverage [31, 39] (e.g., the number of code blocks visited by the
input) or the coverage of the program’s internal state space [35, 40]
(e.g., the number of program states exercised by the input).

A relatively recent research trend has been to use graybox fuzzing
to find vulnerabilities in network services. Pham et al. developed
AFLNet [35], a fuzzer which is guided by both code coverage and
the state space of the target network service. Nyx-Net [37] and
SnapFuzz [3] aimed to address the limitations of the AFLNet, such
as the low throughput, the need for the hard-coded timeout values
and cleanup scripts for resetting the fuzzing environment.

Differential fuzzing techniques have also seen an increase in
their adoption by security researchers. The main idea of differential
fuzzing is to find bugs through comparing the behavior of programs
of the same type. In other words, a large amount of inputs are fed
into similar programs, say, two different C code compilers, and their
reaction to the same inputs are examined for a difference which
might signal a bug.

Bernhard et al. [6] use a differential fuzzing technique to find
logic bugs in the Javascript engines, while the Reen and Rossow [36]
developed DPIFuzz to find techniques for evading deep packet in-
spection. Petsios et al.. [34] developed a generic differential testing
tool called NEZHA, and used it to find semantic bugs and discrep-
ancies – some with critical security implications – across a wide
variety of applications.

Past research has also used differential fuzzing to find HTTP
parsing discrepancies. Jabiyev et al. [24] developed T-Reqs, and
used it to search for parsing discrepancies in HTTP request bodies
which can lead to request smuggling. Shen et al. [38] took a broader
look at parsing discrepancies and developed HDiff to search for
discrepancies which can lead to Host header confusion and cache
poisoning in addition to request smuggling.

HTTP parsing discrepancies have also been examined by Chen
et al. [8] and Nguyen et al. [32] in the context of cache poisoning and
Host confusion attacks. While they do not develop an automated
technique to find these discrepancies, they demonstrate that the
few discrepancies they find can have serious security implications.

3 APPROACH

In this section, we describe our approach for the guided differential
fuzzing of HTTP servers, which we call the Gudifu approach.
Figure 1 shows the data flow diagram of this approach.

The data flow starts with a single input corpus populated with
a set of HTTP requests. A number of fuzzer instances, one for
each target server, share this input corpus and read inputs from
it before mutating them and delivering them to their respective
target servers.

The target servers receive the inputs and process them, possibly
returning an error message to the fuzzer instance, and possibly
forwarding a message to their respective echo server. Regardless,
the target servers are instrumented to report the code coverage
achieved by processing the input back to the fuzzer instance in
order to influence future input selection and mutation.

The echo servers receive the forwarded requests from the tar-
get servers and log them to a single shared database for offline
processing. They then send a response back to the target server,
which sends it back to the fuzzer instance, which then can decide
whether to add the mutated test case back to the input corpus for
other fuzzer instances to draw from and mutate in future fuzzing
iterations.

236

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

forwarded
requests

input
corpus

fuzzer

fuzzer

fuzzer

target
server

echo
server

.

.

.

target
server

echo
server

target
server

echo
server

.

.

.

.

.

.
reading
corpus
writing
corpus

sending
requests
saving
requests

analyzing
requests

Figure 1: Dataflow diagram of Gudifu

3.1 Shared Input Corpus

The input corpus is a collection of HTTP requests which serve
as the pool from which fuzzer instances continuously read and
write inputs. Prior to fuzzing, it is populated with a large set of
distinct and valid HTTP requests. This set contains all possible
combinations of standard HTTP methods (e.g., “GET”, “OPTIONS”)
and standard HTTP headers (e.g., “Expect”, “Referer”) with valid
values compiled from HTTP RFC specifications.

Every fuzzer instance loads the entire input corpus when fuzzing
first starts and then again every second to check for new inputs. As
such, the input corpus serves as the source of input sharing among
fuzzer instances to ensure that the same inputs are delivered to
every target server.

The number and the validity of the requests in the corpus is
important, as we need a rich body of common inputs which will
be forwarded by the target servers based on which we can detect
parsing discrepancies. In the following subsections, we explain the
steps we take to achieve the desired qualities of the input corpus.

3.2 Fuzzer Instances

A number of fuzzer instances share the single input corpus. At a
high level, the responsibility of each fuzzer instance is to drive the
fuzzing process for a single target server. Each fuzzing iteration,
the first action a fuzzer instance takes is to select one input from
the input corpus. This decision is not random, and inputs are both
chosen and processed based on an internal search strategy that will
prioritize inputs based on certain key factors.

The search strategy works as follows. First, it will select any
inputs in the corpus that have not yet been delivered to the target
server. These inputs are not mutated, and are sent as is to the target
server. Thus, when the fuzzer first starts up, it loads the initial
shared input corpus and delivers each input directly to the target
server. This ensures that every target server receives the same
inputs from the corpus, and enables later analysis of how different
servers processed the request. Additionally, the fuzzer instance

reloads the shared corpus once every second, and as other fuzzer
instances add inputs to the corpus, these inputs will be prioritized
and sent as is to the target server.

If every input in the corpus has been sent as is to the target
server, then the search strategy selects an input such that a higher
probability is assigned to inputs that exercised new code paths in
the target server (or a random input is selected if such information
is not yet available). The fuzzer instance then mutates the input
according to a set of predefinedmutation operators. These operators
include transformations such as flipping the value of a single bit,
inserting random bytes, or inserting a value pulled from a dictionary
of meaningful HTTP keywords.

The fuzzer instance then delivers the input to the target server
by acting as a network client to it, connecting over a socket to the
port the target server is listening on and sending the input in full.
While the target server is started only once, the fuzzer instance
starts a new connection to deliver an input in each iteration. It
then waits for a response from the target server. After receiving a
response, the fuzzer instance uses two key pieces of information to
guide future input selection.

First, the fuzzer instance checks the HTTP status code of the
response from the server, and will consider adding the mutated
input to the input corpus only if the server returned a 200 OK
(Because it was by far the most common non-error status code.
But one can also use redirection status codes (e.g., 301, 302) in
addition to 200). Without this check, we found that inputs which
exercised new code paths in the error-handling portions of each
target server were being prioritized, leading to fewer and fewer
requests being forwarded by the target servers over time. Without
the servers forwarding requests, there is less data to detect parsing
discrepancies in, and thus we only add requests back to the corpus if
they return a 200 OK in order to keep the fuzzing process productive.

The second piece of information used by the fuzzer instance to
guide future input selection is the code coverage achieved on the
target server when it processed the current input. If the current
input exercised code that had not yet been exercised, and if the

237

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

target server returned a 200 OK, then the mutated request is added
back to the input corpus and assigned a higher priority in the search
strategy in future iterations. By prioritizing these inputs, we drive
the fuzzer to exercise more and more of the target server’s request-
parsing code, and hope that by doing so, we will exercise portions
of the code that blackbox fuzzing approaches struggle to reach, and
can effect more parsing discrepancies as a result.

3.3 Target Servers

The principal systems being fuzzed are the target servers. Each tar-
get server’s responsibility is to listen on a specific port, forward re-
quests to its own echo server, return the echo server’s response back
to the fuzzer instance, and report the code coverage achieved from
processing the request to the fuzzer instance. The target servers
are built from source and instrumented at compile time to report
code coverage to a shared memory buffer for the fuzzer instance to
read from.

3.4 Echo Servers

Upstream from the target servers are a set of echo servers, one for
each target server, whose responsibilities are to listen on a specific
port, log every request from the target server to a single shared
database of all forwarded requests, and respond with a 200 OK to
the target server.

3.5 Request Database and Search Method

The request database is a database of forwarded requests shared by
all echo servers. As soon as a new forwarded request is captured
by each echo server, it instantly writes it to this common database.

To search for parsing discrepancies, we analyze the forwarded
requests saved to the database. Prior research compared only those
parts of forwarded requests which they thought were the most
relevant for specific attack types. Whereas, we use a holistic search
methodology to capture parsing discrepancies regardless of which
part of the request they arise at.

Our method comprises three stages. In the first stage, for every
captured forwarded request, we get the list of changes made by
the server on the input request. For example, if an input request
contains an extra space before the method name, and the forwarded
request does not have that extra space, then the removal of the space
is a changemade by the server.We developed an algorithm to obtain
this list of changes, Python code for which is shown in Listing 1.

In the second stage, we look at the changes made by all servers
for a given input request, and discard any changes which every
server makes, as they are not suitable for comparison. We repeat
this for every input request and obtain 1) the list of changes made
to it, and 2) for each change, the list of the servers which made
them.

In the third stage, we bucketize the changes based on the set of
servers which made them. For example, if changes C1 and C3 are
made by only servers S1 and S3, then C1 and C3 go into the bucket of
[S1, S3]. Once we populate each bucket with the changes belonging
to it, we manually examine starting from the least populated bucket.

In the manual examination phase, we pay little or no attention to
those which are trivial changes (e.g., a space is added after colon in
host:example.com and it becomes host: example.com). When

1

2 # Changes to input by the forwarded request
3 def changes(r, f): # r: input, f: forwarded
4

5 # addition, modification, deletion lists
6 adds, mods, dels = [], [], []
7

8 for header in headers(f):
9 if header in headers(r):
10 continue
11 if lineno(header) == 1: # request line
12 mods.add(headers(r)[0], header)
13 if ':' not in line:
14 adds.add(header)
15 else:
16 name, value = header.split(':')
17 # get input headers with name 'name'
18 named_headers = headersnamed(r, name)
19 if len(named_headers) == 0:
20 adds.add(header)
21 if len(named_headers) == 1:
22 mods.add(named_headers[0], header)
23 else:
24 mods.add(join(named_headers), header)
25

26 for header in headers(r):
27 if header in headers(f):
28 continue
29 if header not in mods:
30 dels.add(header)
31

32 if input_body != forwarded_body:
33 mods.add(input_body, forwarded_body)
34

35 return adds, mods, dels

Listing 1: Algorithm for getting the changes on the input

request (in Python).

we see the changes which are unusual and non-trivial, we confirm
them by checking the behavior one more time by sending the
relevant requests to the servers and take a note of them once they
are confirmed.

4 EXPERIMENTATION

In the experiment with the Gudifu approach, we focus on the
HTTP/1 parsing discrepancies of the servers. The general infor-
mation about the servers which were instrumented and fuzzed is
listed in Table 1. We use libFuzzer [31] as the fuzzing engine.

Table 2 gives details about the data generated during the experi-
ment. "Valid" requests are those which were forwarded by at least
one server. The number of requests forwarded by each server is also
listed. The number of commonly forwarded requests (i.e., the input
requests which are forwarded by at least two different servers) is
relatively small. The reason is, the inputs are shared through the

238

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 1: Names, versions, and source languages of tested prox-

ies.

Server Name Version Source

Apache httpd 2.4.54 C
NGINX 1.22.1 C
H2O 2.2.6 C
Apache Traffic Server (ATS) 10.0.0 C++
HAProxy 2.7.1 C
Envoy 1.24.1 C++

input corpus and only successful inputs (i.e., the ones which cover
new code blocks) are added to the corpus.

4.1 Configuring Servers

When we configure the target servers for the experiment, we have
the least possible number of directives which allow the servers to
receive requests at a certain port and forward them to where their
own echo server is running. Only for NGINX and H2O, we enabled
the preservation of the Host header value in order to get visibility
into how this header is parsed by these servers (by default these
servers overwrite the incoming Host header with the IP and port
of the host they forward to).

Usually, servers do not have configuration directives to let users
control their parsing behavior (with few exceptions like Envoy
allowing users to merge slashes in the request URI [14]). Because
the parsing behavior of servers is usually shaped by the way the
developers implement them under the guidance of the specifications
and it is not high-level enough for letting users change it.

We expect that the target servers’ default parsing behavior is the
most secure parsing behavior as they would not allow an insecure
behavior to remain as the default. Also, given that testing all possi-
ble configurations for each target is a hard task if not impossible,
we run each server with its default configuration.

4.2 Capturing Cacheable Responses

In addition to saving the input requests and forwarded requests to
the filesystem for a later analysis, we also saved requests which
generate a cacheable error status code. We compile the list of those
status codes by combining the unsuccessful cacheable codes defined
by the HTTP specification and those which are commonly cached

Table 2: Experiment overview.

Experiment duration 12 hours

of Valid requests 6,737,538

of Apache forwarded requests 1,062,694
of NGINX forwarded requests 939,348
of H2O forwarded requests 739,600
of ATS forwarded requests 939,348
of HAProxy forwarded requests 856,792
of Envoy forwarded requests 903,666
of Commonly forwarded requests 45,633

by CDN servers in practice. The list consists of the following status
codes: 300 Multiple Choices, 301 Moved Permanently, 302
Moved Temporarily, 404 Not Found, 405 Method Not Allowed,
410 Gone, 414 URI Too Long, 501 Not Implemented.

Past research [32] has shown the security implications of parsing
discrepancy between two servers where one of them forwards a
request and the other one responds with a cacheable error status
code. Therefore, in this work, we also want to look at this type of
parsing discrepancy.

5 PARSING DISCREPANCIES

We use the search methodology (described in Section 3) on the
forwarded requests collected from the experiment to find the pars-
ing discrepancies. We discuss the parsing discrepancies under four
categories in the given order: request line discrepancies, request
headers discrepancies, request body discrepancies and behavior
discrepancies related to cacheable responses.

5.1 Request Line Discrepancies

We further divide request line discrepancies into three classes. The
first one is about the parsing of absolute URIs. The second one
looks at the treatment of reserved characters. Finally, the third one
consists of the discrepancies caused by normalization. The examples
for them can be found in Table 3. Note that the HTTP/1.1 version
token is shortened to H/1 in the table for the sake of brevity.

5.1.1 Absolute URI. As shown in the first row of Table 3, servers
exhibit discrepancies in their parsing of URI when it is in the ab-
solute form. HTTP RFC 2616 [16] states that if the URI is in the
absolute form, then the host is what is given in the URI and the
Host header should be ignored. Apache httpd, NGINX, ATS and
Envoy convert the URI into the relative form and add the uri-host
in the Host header. Whereas, H2O adds a slash in front of the URI
which changes the semantics, and HAProxy throws an error as it
requires the Host header value and the uri-host in the URI to be
the same.

When the absolute URI has an empty path (example in the second
row) and the Host header is missing, servers parse it differently.
According to the URI RFC 3986 [5], when the authority component
is present in the URI, then the path can be empty. As for the Host
header, RFC 7230 [17] states that it is required, and a request that
lacks the header must be responded with 400 Bad Request. As
shown in the second row, Apache httpd and NGINX throw an error,
H2O adds a slash in front and make the Host header value default,
ATS and Envoy generate Host header value based on the uri-path
and HAProxy keep the same URI and does not add a Host header.

As can be seen in the third row, when the URI consists of just
the scheme name, most servers see it as an error while few of them
see it valid. NGINX, HAProxy and Envoy respond with 400 Bad
Request and ATS closes the connection as a result of the error.
Whereas, Apache httpd converts it into a slash and H2O adds a
slash before the URI while they retain the Host value.

5.1.2 Reserved Characters. Reserved characters mainly serve as
delimiters for the URI sections (e.g., ? signals the start of the query
part). As we see in Table 3, they can easily trigger parsing discrep-
ancies in the parsing behavior of servers.

239

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

Table 3: Examples of parsing discrepancies in request lines.

Input Apache httpd NGINX H2O ATS HAProxy Envoy

GET http://a/b H/1
Host: c

GET /b H/1

Host: a

Same as
Apache httpd

GET / http://a/b H/1

Host: c

Same as
Apache httpd

Bad Request
Error

Same as
Apache httpd

GET http://a H/1

Host: c

Bad Request
Error

Bad Request
Error

GET / http://a H/1

Host: default

GET / H/1

Host: a

GET http://a H/1

Host: c

Same as
ATS

GET http: H/1
Host: c

GET / H/1

Host: c

Bad Request
Error

GET / http:

Host: c

Connection
Reset

Bad Request
Error

Bad Request
Error

GET ? H/1 GET / H/1
Bad Request
Error

GET / ? H/1 GET ? H/1
Bad Request
Error

Bad Request
Error

GET @ H/1
Bad Request
Error

Bad Request
Error

GET / H/1 GET / H/1 GET @ H/1
Bad Request
Error

GET /b; H/1 GET /b; H/1 GET /b; H/1 GET /b; H/1 GET /b ; H/1 GET /b; H/1 GET /b; H/1

GET /b#c H/1
Bad Request
Error

GET /b #c H/1 GET /b#c H/1 GET /b #c H/1 GET /b#c H/1
Bad Request
Error

GET /%61 H/1 GET / a H/1 GET / a H/1 GET /%61 H/1 GET /%61 H/1 GET /%61 H/1 GET /%61 H/1

GET /// H/1 GET / // H/1 GET / // H/1 GET /// H/1 GET // / H/1 GET /// H/1 GET /// H/1

GET /a/.. H/1 GET / H/1 GET / H/1 GET /a/.. H/1 GET /a/.. H/1 GET /a/.. H/1 GET /a/.. H/1

For instance, as shown in the fourth row, when the URI is just a
question mark (which is for starting the URI query section), while
NGINX, HAProxy and Envoy return an error, Apache httpd, H2O
and ATS forwards the request. Apache httpd converts into a slash,
H2O adds a slash before the question mark and finally ATS removes
the whole URI in the requests they forward.

Whereas, as shown in the fifth row, when the URI is just an
at-sign (which is for separating the user information from the host),
Apache httpd, NGINX and Envoy throw an error while the rest
forward the request. H2O and ATS replaces the URI with a slash,
whereas HAProxy retains the at-sign as the whole URI.

Semicolon (";") is reserved because it can be used to separate
the URI parameter names and values as stated in Section 3.3 of
RFC 3986 [5]. As seen in the fifth row when the path is just a
semicolon, it is also treated differently. ATS removes it in the URI
before forwarding. Whereas, all other servers keep it.

Number sign ("#") is also a special character as it serves as the
start of the fragment section. When servers receive a URI with a
fragment, they respond differently. Apache httpd and Envoy re-
spond with an error. NGINX and ATS drops the fragment before
forwarding the request. Finally, H2O and HAProxy preserve the
fragment section.

5.1.3 Normalization. Finally, servers have discrepancies in the way
they normalize request URIs. Also, while one server normalizes the
URI before forwarding, the other one might prefer not to normalize.

For instance, as shown in the eighth row, when URI has the non-
reserved characters percent-encoded (%61 is percent-encoded ver-
sion of the ASCII character "a"), the servers act differently. Percent-
encoding is a means to safely transfer reserved characters if they
are part of the URI content. While Apache httpd and NGINX decode

them before they forwarded the request, all other servers forward
it without decoding.

The URI path is not allowed by RFC 3986 to start with multiple
slashes as it is stated in the "Path" section of the document. Again,
servers parse request URIs which start with multiple slashes differ-
ently. Apache httpd and NGINX trim all the extra slashes and just
keep one. ATS removes only one slash and leaves the rest. Finally,
H2O, HAProxy and Envoy forward them as is.

According to RFC 3986, the ".." and "." characters have a similar
role to their role within operating systems and they are intended
for use at the beginning of relative paths. When servers receive a
request URI containing these characters, some of them normalize
the URI, some not. Apache httpd and NGINX normalize the request
URI. Whereas, all other servers forward them with no change.

5.2 Request Header Discrepancies

When it comes to the parsing of request headers, the parsing of
servers differ widely again. For example, as seen in the first row
of Table 4, when a header with an empty name is present in a re-
quest, while most servers report an error, some accept it. Apache
httpd, NGINX, H2O and Envoy return the 400 Bad Request re-
sponse. ATS still forwards the request after dropping the header
with the empty name. Whereas, HAProxy drops the header which
comes after the empty-named header even if the following header is
Content-Length and the request has a body. As a result, a request
which has a body, yet no body length header, is still forwarded.

According to RFC 7230, each header field contains a colon (":")
as a means to separate the header name and header value. When
the headers block of a request has a line without a colon, some
servers respond with an error, some accept it. While Apache httpd,
H2O, HAProxy and Envoy respond with 400 Bad Request, ATS

240

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

Table 4: Examples of parsing discrepancies in request headers.

Input Apache httpd NGINX H2O ATS HAProxy Envoy

POST / H/0
:b
Content-Length:4

Bad Request
Error

Bad Request
Error

Bad Request
Error

POST / H/1
Content-Length:4

POST / H/0

Content-Length:4

Bad Request
Error

GET / H/1
Host: a
b

Bad Request
Error

GET / H/1
Host: a
b :

Bad Request
Error

GET / H/1
Host: a

b

Bad Request
Error

Bad Request
Error

GET / H/1
Host: a
Host: b

Bad Request
Error

Bad Request
Error

GET / H/1

Host: b

Connection
Reset

Bad Request
Error

GET / H/1

Host: a,b

POST / H/1
Host: a
Expect: b

Expectation
Failed Error

POST / H/1
Host: a

Expect: b

POST / H/1
Host: a

Expect: b

Connection
Reset

POST / H/1
Host: a
Expect: b

POST / H/1
Host: a
Expect: b

POST / H/1
Referer:h://a
Referer:h://b

POST / H/1
Referer:h://a,\
h://b

POST / H/1
Referer:h://a
Referer:h://b

POST / H/1
Referer:h://a
Referer:h://b

Connection
Reset

POST / H/1
Referer:h://a
Referer:h://b

POST / H/1

Referer:h://a

Referer:h://b

POST / H/1
a: b
\tc

POST / H/1
a: b c

Bad Request
Error

POST / H/1
a: b
: \tc

POST / H/1

a: b \tc

POST / H/1

a: b \tc

POST / H/1

a: b \tc

forwards the request after dropping the line which does not have a
colon. Whereas, NGINX adds a colon (and makes it a header with
empty value) to this line and forwards to the upstream.

Another parsing discrepancy is observed when a request con-
tains multiple Host header values. As stated in section 4.4 of RFC
7230, a server must respond with 400 Bad Request status code
to any request that contains more than one Host header. While
most servers respond with the 400 Bad Request, some forward
the request. Apache httpd, NGINX and HAProxy send the 400 Bad
Request status code, while ATS closes the connection to report the
error. Whereas, H2O ignores the first Host header and forwards
the second one, while Envoy merges the two Host header values
into one with a comma when forwarding the request.

The Expect header has only one value defined by the specifica-
tion and it is 100-continue. When a client has a request with a
huge body, it sends the request line and headers first adding Expect
header to make sure that the server is ready to receive the body and
this is for improving the efficiency. When this header is sent with
an invalid value, the responses of the servers vary. Apache httpd
responds with the Expectation Failed Error and ATS closes the
connection. Whereas, NGINX and H2O forward the request after
dropping the header, while HAProxy and Envoy keep the header.

The referer header allows clients to specify the address of the
page from which the request is made. When a request contains
double referer header, NGINX, H2O and HAProxy keeps both of
them as they are and forward them along. Apache httpd merges
two headers into one header with a new value where the two values
are combined with a comma. Envoy drops both of them if they lack
a path. Finally, ATS reports an error.

Line folding is a means for headers to have a multiline value (e.g.,
user-agent: mozilla\r\nfirefox) and as seen in the last row

of the Table 4, it triggers parsing discrepancies. When a line-folded
request is sent to servers, Apache httpd, ATS, HAProxy and Envoy
seem to support the line folding as they append the following line
to the current before forwarding to the upstream. NGINX respond
with the 400 Bad Request. Whereas, H2O seems not to support
the line folding as it makes a new header from the following line
by adding a colon before it.

5.3 Request Body Discrepancies

Similar to request line and header parsing, the parsing of request
body is implemented differently by servers as shown in Table 4
(Transfer-Encoding: chunked and Content-Length have been
abbreviated as Transfer-Enc: and Content-Len respectively for
the brevity). For example, Content-Length is for indicating the size
of the request body and is expected to have a numeric value. How-
ever, when this value is very big, then servers might respond differ-
ently. In fact, when its value is 1019 (a value between 263 and 264),
ATS does not forward the body while keeping the Content-Length
as is. Whereas, HAProxy and Envoy forward the body and the
Content-Length as is.

Trailer headers, as explained in RFC 7230, allow senders to send
metadata at the end of the chunked body (e.g., to allow the recipient
to check the integrity). When a chunked body with a trailer header
is sent to servers, Apache httpd, H2O, NGINX and Envoy do not
forward it to the upstream. Whereas, ATS and HAProxy respect
the trailer header and keep it when forwarding.

When the request body does not follow the chunked body format
properly, some of them choose to normalize it, while some leave as
is. In the example shown in the third row (the backslash followed
by the space is not a part of the request contents, it is for line
wrapping), the second chunk size (i.e., 1b) is bigger than the chunk

241

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

Table 5: Examples of parsing discrepancies in request bodies.

Input Apache httpd NGINX H2O ATS HAProxy Envoy

Content-Len:1019

bbbb
Bad Request
Error

Bad Request
Error

Bad Request
Error

Content-Len:1019

bbbb

Content-Len:1019

bbbb
Content-Len:1019

bbbb

Transfer-Enc:
0\r\na:b\r\n\r\n

Content-Len:0 Content-Len:0 Content-Len:0 Transfer-Enc:

0\r\n a:b \r\n\r\n

Transfer-Enc:

0\r\n a:b \r\n\r\n

Transfer-Enc:
0\r\n\r\n

Transfer-Enc:
1\r\nb\r\n1b \
0\r\n\r\n

Request
Timeout

Request
Timeout

Request
Timeout

Transfer-Enc:
1\r\nb\r\n1b \
0\r\n\r\n

Transfer-Enc:

6\r\nb0 \

\r\n\r\n\r\n

Transfer-Enc:

6\r\nb0 \

\r\n\r\n\r\n

Transfer-Enc:
\xff20\r\n\r\n

Bad Request
Error

Bad Request
Error

Bad Request
Error

Transfer-Enc:

\xff20\r\n\r\n

Bad Request
Error

Transfer-Enc:

2\r\n\r\n\r\n

Expect:100-cont
Content-Len:4
bbbb

Content-Len:4

bbbb

Content-Len:4
bbbb

Content-Len:4
bbbb

Expect:100-cont
Content-Len:4

bbbb

Expect:100-cont
Content-Len:4
bbbb

Content-Len:4
bbbb

Transfer-Enc:
dddd0001\r\n

Bad Request
Error

Bad Request
Error

Request
Timeout

Transfer-Enc:

dddd0001\r\n

Transfer-Enc:

2 \r\n\r\n\r\n

Bad Request
Error

Table 6: Examples of discrepancies where servers respond with a cacheable error code.

Input Apache httpd NGINX H2O ATS HAProxy Envoy

GET /%2f H/1 Not Found
Error

GET / H/1 GET /%2f H/1 GET /%2f H/1 GET /%2f H/1 GET /%2f H/1

GET h://a?/ H/1 GET /?/ H/1 GET /?/ H/1 GET / h://a?/ H/1 GET ?/ H/1 Bad Request
Error

Not Found
Error

OPTIONS *h://a/ H/1 Bad Request
Error

Bad Request
Error

/ OPTIONS *h://a/ H/1 Connection
Reset

OPTIONS *h://a/ H/1 Not Found
Error

data (i.e., 0\r\n\r\n). While ATS forwards the body as is, HAProxy
and Envoy reconstructs the chunked body by merging two chunk
data sections and sizing them properly.

Similarly, when the chunk size contains invalid characters (as
the one shown in the fourth row, \xff, not all servers act the same
way. Apache httpd, NGINX, H2O and HAProxy respond with the
400 Bad Request. ATS forwards the request, but does not retain
the request body. Whereas, Envoy reconstructs a new chunked
body where the chunk data is wrapped under a valid chunk size.

If a client wishes to send a huge request body, it is recommended
to send Expect header alongside with the request line and headers
to see if the recipient is ready to receive the body. When an Expect
request with a request body sent to servers, NGINX, H2O and Envoy
drop the Expect header and keep the body, while HAProxy keeps
both. Whereas, Apache httpd drops both the header and the body,
and ATS keeps the header while dropping the body.

Finally, a chunk size with a large value such as the one in the last
row of Table 5 triggers a body parsing difference. The hexadecimal
value of 0xdddd0001 is equivalent to a decimal value between
231 and 232. While Apache httpd, NGINX, Envoy reports an error
for this request, H2O waits for more data to be sent. HAProxy
reconstructs the body and sends two bytes of new chunk data (i.e.,

\r\n). Whereas, ATS ignores the body in the income request and
does not forward it to the upstream.

5.4 Cacheable Responses

As shown in Table 6, for some requests at least one server responded
with an error status code which is cacheable. For instance, when the
URI contains a percent-encoded version of a reserved character ("/"
in the example), then H2O, ATS, HAProxy and Envoy keep the URI
as is. NGINX decodes it and makes the URI a single slash. Whereas,
Apache httpd responds with 404 Not Found status code which is
defined as cacheable by RFC 7231 [18] and is commonly cached by
cache servers in practice.

When a question mark, which signals the start of the query
fragment, comes before the path, it triggers parsing discrepancies
in servers. As seen in the second row, Apache httpd and NGINX
convert the URI into the origin form and make the question mark a
part of the path. H2O adds a slash before the URI as it is an absolute
URI. ATS also converts the URI to the origin form, but it leaves the
question mark before the path. HAProxy reports an error for this
request. Finally, Envoy responds with 404 Not Found which is a
cacheable status code.

242

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

Figure 2: Different types of attacks targeting each server pair.

The asterisk-formURI ("*") is only used for server-wideOPTIONS
requests, where the client wishes to make the OPTIONS request
for the server as a whole, not for a specific resource [17]. When
both the asterisk and absolute URI forms come together in a request
URI, servers again act differently. As seen in the third row, Apache
httpd, NGINX and ATS report error, while H2O adds a slash before
the URI and HAProxy keeps as is. Finally, Envoy responds with a
cacheable status code, 404 Not Found.

6 ATTACKS

To demonstrate the security implications of these parsing discrep-
ancies, we devise a number of attack scenarios and test them in a
lab setup. As our attacks exploit the parsing discrepancies between
servers, our targets are server pairs deployed in a proxy-origin
fashion.

6.1 Access Control Bypass

Access control is a common security mechanism used on the Inter-
net today, typically to restrict public access to pages which are not
for public use. For instance, one might want to block public access
to the /admin page on a web server to make sure that only those
who are authorized to use that page can access it. This type of access
control is usually configured as a rule on the reverse proxy, which
ensures that requests which match this rule do not get forwarded
to the origin.

To test for this attack, we add a rule on the reverse proxy of every
pair to block all requests to /admin by following the instructions
given in their documentation for page access control. The origin
server of every pair serves certain content when it receives a request
for /admin. If the origin server of a pair is not a web server (i.e.,
the origin is ATS, HAProxy, or Envoy), then we have it forward to
an additional upstream server serving the same specific content at
/admin.

We then designed a set of mutated GET requests for /admin based
on the requests which trigger request line parsing discrepancies
and sent them to the reverse proxy of each pair. If the content at
/admin was served, then we confirm the existence of an access
control bypass attack. As seen in Figure 2, we find many server
pairs affected by this attack due to four main types of request line
parsing discrepancies.

The most common discrepancies arises when the request URI
is //admin (see the extra-slash category in Figure 2). When the
affected reverse proxies receive such a request, their rules fail to
match it to /admin and as most of them forward the request as is,
the origin server ignores or trims the extra slash, and the content is
served. Though most proxies forward the request as is, ATS actually
trims one of the slashes before forwarding, yet still fails to match
the rule, likely because trimming happens after the access control
check.

The next type of discrepancy happens when the URI has an
at-sign before the path (i.e., @/admin). Only one server pair was
affected for this case: HAProxy-ATS. HAProxy does not interpret
the path as /admin and forwards the URI as is. When ATS receives
it, it trims the at-sign, converting the URI to /admin and therefore
serves the content.

Another type of discrepancy leading to access control bypass is
caused by the presence of a scheme name right before the path (i.e.,
http:/admin. This attack affects one server pair: HAProxy-Apache
httpd. Like the previous attack, HAProxy cannot match this URI
to the rule it has and therefore forwards it to Apache httpd. When
Apache httpd receives it, it trims the scheme part and processes the
path successfully.

Finally, we see several pairs affected by bypass attacks caused by
the encoding of the path, for example, where the first letter of the
page name is percent-encoded (i.e., /%61dmin. When the affected
servers receive this URI they do not interpret the page as /admin,
and therefore forward it to the upstream where this is interpreted
as an access to the admin page.

6.2 Cache Poisoning Denial-of-Service

The next type of attack which happens due to a parsing discrepancy
is a cache poisoning denial-of-service (CPDoS) attack. In this attack,
the attacker constructs an HTTP request for a legitimate resource
which would be accepted and forwarded by the cache server on
the request path, but would trigger a cacheable error status code
(e.g., HTTP 404 Not Found) on the origin server. As a result, the
attacker manages to poison the cache for the legitimate resource
and every other user trying to reach that resource will receive an
error code for their request.

To test this attack scenario, we first configure the reverse proxy
to cache responses. ATS does not cache error response codes by
default, so we enable this on ATS in order to simulate the common
real-world scenario where error responses are cached [1, 9, 15]. On
the origin side, we create a legitimate resource for which we want
to have victims receive a poisoned response.

As with testing for access control bypass, we created a set of
mutated requests for the legitimate resource based on the requests
which trigger request line parsing discrepancies, and sent them

243

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

to the reverse proxy of each pair. We follow this with a valid, un-
mutated request for the same resource, and if we receive an error
response code, then we confirm the existence of a CPDoS attack.

We find that due to a parsing discrepancy of percent-encoded
characters, a CPDoS attack exists for one server pair: ATS-Apache
httpd. When an attacker sends a request with a URI of /foo%2fbar,
where the %2f is the percent-encoded version of the slash char-
acter, ATS interprets the URI as /foo/bar for caching purposes,
but forwards the URI as is to Apache httpd. When Apache httpd
receives this request URI, it responds with HTTP 404 Not Found
which is cached by ATS. As a result, ATS returns this error code to
subsequent requests made for /foo/bar.

6.3 HTTP Request Smuggling

HTTP Request Smuggling (HRS) occurs when the attacker is able
to smuggle an additional request through the reverse proxy into
the connection between the reverse proxy and the upstream server.
As the reverse proxy is not aware of that additional request, this
can be exploited for many serious attacks from response queue
poisoning to request hijacking.

To test for this attack, we first configure each reverse proxy
to reuse connections to the origin server. Then, we send requests
with apparent request smuggling potential (i.e., where two different
servers forward requests with different actual body lengths and/or
Content-Length header values) to the reverse proxy. We then use
a popular technique adopted by prior work [24, 25] to confirm the
existence of the HRS vulnerability, in which we send the potential
smuggler request followed by a normal request, and check to see if
the normal request receives an error response from the origin.

We find anHRS attack affectingmultiple server pairs withHAProxy
as the reverse proxy due to the parsing behavior of a header with
an empty name, which is the first of its type, to the best of our
knowledge. As shown in the first row of Table 4, when HAProxy
receives a request with an empty header name, it removes the
header coming after this header. As a result, if the input request
has a request body and has a Content-Length header after the
empty-named header, HAProxy forwards this request without the
Content-Length header while leaving the request body intact. We
see that when we put another request in the body of this request,
it is forwarded by HAProxy and treated as the next request by the
origin server.

We can attribute finding this attack in large part to our holistic
search methodology. If, like prior work, we were to try to find HRS
attack vectors by looking just for differences in the forwarded re-
quests’ body sizes, we would see that ATS and HAProxy forward a
request with the same body length in response to the request with
the empty-named header, and would therefore miss this finding.
However, as we searched for the discrepancies in the header pars-
ing as well, we noticed that HAProxy drops the Content-Length
header, unlike ATS.

7 COMPARISONWITH OTHER TOOLS

The other tools which were developed by the past research to
find HTTP parsing discrepancies are T-Reqs [24] and HDiff [38],
both of which use the blackbox fuzzing technique. Source code for
both tools are publicly available on Github. However, due to the

combination of missing code and unclear usage instructions we
were not able to run HDiff.

In order to compare the abilities of Gudifu and T-Reqs in finding
parsing discrepancies, we run an additional experiment with T-Reqs.
We take several steps in order to run the T-Reqs under the same
conditions that applied to the Gudifu experiment. First, we write
a new grammar to enable T-Reqs to generate the requests which
were given to Gudifu in the initial corpus. Second, we use the same
number of processes, and the same timeout durations for T-Reqs.
Finally, we let the T-Reqs experiment run for twelve hours.

In order to compare the results, we use our own search method-
ology on the forwarded requests captured in the T-Reqs experiment.
We find two discrepancy types in the body parsing. One of them is
that ATS and Apache httpd do not forward the request body to the
echo server when the expect: 100-continue header is present in
the request, while other servers still forward the body. The other
is that some servers (e.g., HAProxy) forward the trailer headers in
the chunked body, while some (e.g., Envoy) ignore them.

As Table 5 shows, Gudifu also finds both of these discrepancy
types. In addition to them,Gudifu finds four additional discrepancy
types in the body parsing, making it six in total. The difference in the
number of findings show that theGudifu approach is more effective
than the T-Reqs approach in finding body parsing discrepancies.

8 DISCUSSION

In this section, we discuss the limitations of our work, possible
ways of addressing the discrepancy attacks and finally the vendor
responses.

8.1 Limitations

When we search for the discrepancies in the servers’ parsing behav-
ior, we only look at the forwarded requests. However, forwarded
requests might not always accurately reflect the parsing behavior of
the server. For example, when ATS receives a request for //admin,
it trims the first slash and forwards a request for /admin. At a
glance, this would seem to suggest that when ATS is configured
to block access to /admin, it would block a request for //admin,
but in reality it does not, because the trimming occurs after access
control checks.

One possible way to increase our visibility into the parsing be-
havior is to have the servers log different fields of the request after
they parse it. However, this feature is not supported by all servers
and is also limited to recording only the components of an HTTP
request that a server exposes for logging.

Also, the number of commonly forwarded requests in our exper-
iment is small, given the duration of the experiment. Just 45,633
requests out of 6,737,538 total valid requests are common to all
servers. This limitation originates from the design choice of only
adding forwarded requests back to the input corpus if they both
exercise new code in the target server and receive a 200 OK from
the echo server. However, we believe that this results in a higher
quality of inputs in the corpus, which compensates for the small
number of common requests.

While not a limitation of Gudifu per se, an obvious drawback of
our research and presentation is that we are unable to experiment

244

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

with proxies where no source code is available. In particular, Con-
tent Delivery Networks (CDNs)–prime targets for both researchers
and attackers due to their critical place in the Internet ecosystem–
are necessarily left out of scope. Nevertheless, Gudifu has been
publicly released, and this allows CDNs and other proprietary tech-
nology owners to test their systems in house and avail from our
research contributions. We acknowledge that prior work that uti-
lized strictly blackbox approaches does not have this limitation.

8.2 Potential Improvements

The Gudifu framework was designed to identify discrepancies in
HTTP/1 parsing. Discrepancies in HTTP/2 and HTTP/3 parsing can
also be identified with Gudifu with a few adjustments. These ad-
justments would include the support for a structure-aware fuzzing
due to the highly-structured binary input formats of HTTP/2 and
HTTP/3. For instance, the “Protocol Buffers” input format [7] with
its mutator mechanism [21] can be used to enable structure-aware
fuzzing in LibFuzzer [22]. Another adjustment would be configur-
ing HTTP/2 and HTTP/3 targets to forward requests in HTTP/1
format in order to support the use of Gudifu’s discrepancy search
method. The protocol downgrade is a commonly supported feature
in HTTP servers [23].

Also, Gudifu relies on the source code availability for the instru-
mentation of the target programs. There are mainly two approaches
for the instrumentation when the compile-time instrumentation
is not possible: 1) dynamic binary translation, which performs the
instrumentation at runtime and therefore has inherent performance
overhead, and 2) static binary translation, which statically rewrites
the target program binary to add the instrumentation code, with
recent works such as rev.ng [19], RWFuzz [33] and Retrowrite [13]
proposing new tools and techniques in this direction. In particular,
rev.ng [19] can be used to translate a target program binary into
LLVM IR and make it suitable for fuzzing with LibFuzzer [20].

Another improvement that can be made to the Gudifu frame-
work is to increase the robustness of fuzzing experiments. Currently,
if any input causes its target to stop running (i.e., exit) , then the
fuzzer instance also stops running. This resets all the coverage
achieved until that point in the experiment. This issue can be re-
solved with extra user-implemented measures. One such measure
could be identifying the inputs that cause the targets to exit and
preventing their delivery to the relevant target.

Finally, the number of commonly forwarded requests, which
determines the size of the search space for parsing discrepancies,
can be increased in order to broaden the search space. Currently,
this number is equal to the total number of inputs that achieve
a new coverage in any target (i.e., the input corpus size). This
amount can be increased by having each fuzzer instance deliver its
generated input to all targets in each iteration, while using its own
target’s coverage feedback to guide the input selection. This would
significantly increase the size of commonly forwarded requests,
since every target receives and parses each request generated by
all fuzzer instances.

8.3 Addressing Discrepancy Attacks

Recall that discrepancy attacks are an outcome of systems-centric
interaction hazards. Even in an idealized system where every com-
ponent is perfectly secure in isolation, discrepancy attacks that
undermine the entire system’s security goals can crop up when the
right (or perhaps wrong) components are allowed to interact with-
out an external enforcement mechanism for security constraints.

This is a threat that cannot easily be modeled, let alone effec-
tively addressed, by traditional security thought or the tools avail-
able to us. Standard approaches to developing secure code (e.g.,
code reviews, static and dynamic program analysis), defense (e.g.,
firewalls, anomaly detection systems, system segmentation), and
security management (e.g., asset discovery, CVE monitoring, auto-
matic patching) are all primarily designed to secure an environment
under the full control of its operator.

In contrast, discrepancies impact highly distributed systems de-
veloped, owned, and operated by distinct entities, without any
interaction between them. Regardless of how rigorously they are
tested in isolation, system interaction flaws can remain hidden.
When an issue is discovered, since there is no single component or
root cause to blame, assigning responsibility may not be possible,
and a fix infeasible. Attempts to eliminate hazardous interactions
could result in changes that introduce further unexpected interac-
tions with other technologies elsewhere. This is an emergent, hard
problem in computer science due to increasing system complexity;
there is no known solution.

As the pace of research in this domain increases, one immediately
actionable recommendation for all proxy and server developers is
to strictly follow RFC guidance in their HTTP implementations.
As evident in our findings, many discrepancies are due to liberties
taken when implementing behavior explicitly defined in protocol
specifications. To reiterate, in isolation, these may be harmless and
even meaningful optimizations, but the impact of seemingly incon-
sequential deviations from the specification could be exploitable in
unpredictable ways, as repeatedly demonstrated with the steady
stream of new attacks.

The same recommendation applies to the working groups in
charge of designing and standardizing protocol specifications. In
the light of emergent discrepancy attacks and ever-increasing com-
plexity of networked systems, specifications should consider mov-
ing away from the traditional MAY, SHOULD, MUST framework for
requirements, and instead be more prescriptive. Such prescriptive
specifications are still helpful for security even when there is no
clear winning approach among the design alternatives under con-
sideration, as the end goal is consistent behavior across different
implementations.

An immediate action that can be taken by network operators is to
implement the whitelisting approach to prevent discrepancy-based
attacks. More specifically, they can analyze their own network traf-
fic and identify the legitimate request patterns. This can enable
them to implement rules for allowing only those requests that fol-
low those patterns and blocking the rest. However, the rest can
contain unusual legitimate requests, leading to false positive scenar-
ios and usability issues. In fact, this is precisely why major Internet
companies cannot comply with all RFC guidelines and prefer the

245

RAID 2024, September 30–October 02, 2024, Padua, Italy Bahruz Jabiyev, Anthony Gavazzi, Kaan Onarlioglu, and Engin Kirda

satisfaction and the needs of their customers by allowing them to
use non-compliant behavior unless they choose otherwise [2].

Alternatively, network operators can take the blacklisting ap-
proach to prevent discrepancy-based attacks. While it has limited
ability in blocking previously-unseen attacks, it can be very ef-
fective in preventing subsequent attempts of the same attack by
learning its patterns and implementing preventive rules based on
those patterns. In fact, some CDN companies take this approach
against the HTTP Request Smuggling attacks and search incoming
requests for attack patterns such as “an HTTP request in POST body”
and “duplicate Content-Length headers” [4].

8.4 Vendor Responses

Vendors of three out of six products we tested in this paper have
responded to our report. ATS developers made a release with fixes
for access control and cache poisoning attacks and assigned a CVE,
CVE-2023-33934, with a critical severity. NGINX developers did
not take an immediate action, but they said NGINX parsing can
be improved in some of the request mutations we reported. The
HAProxy team urgently made an emergency release and assigned
a CVE , CVE-2023-25725, with a critical severity. They also thanked
us for making the Internet a safer place.

9 CONCLUSION

We presented Gudifu, a guided differential fuzzer for efficient dis-
covery of novel discrepancy attacks targeting HTTP servers. Our
approach differentiates itself from the existing work in this do-
main through our graybox testing approach and novel discrepancy
search methodology, evidently achieving better attack discovery
performance. This affirmatively answers our research questions
(Q1) and (Q2) we laid out in Section 1.

Through our extensive experiments with six prominent server
technologies, detailed findings, and concrete exploits crafted from
these results in Sections 5 & 6, we demonstrated the feasibility and
severity of discrepancy attacks, therefore answering our remaining
research question (Q3).

ACKNOWLEDGMENTS

The initial version of the Gudifu framework was developed with
the author’s collaborative work with the Envoy Platform Team
at Google. We thank Adi Peleg and Harvey Tuch of Envoy Plat-
form Team for their feedback and contributions, which played a
very important role in the success of this research. We also thank
the anonymous reviewers and our shepherd for their suggestions
and directions for the improvement of the paper. This project was
partially supported by National Science Foundation grants CNS-
2031390 and CNS-2329540.

REFERENCES

[1] Akamai. [n. d.]. Caching. Akamai Techdocs. https://techdocs.akamai.com/api-
definitions/docs/caching.

[2] Akamai. [n. d.]. Strict Header Parsing. Akamai Techdocs. https://
techdocs.akamai.com/property-mgr/docs/strict-header-parsing.

[3] Anastasios Andronidis and Cristian Cadar. 2022. SnapFuzz: High-Throughput
Fuzzing of Network Applications. In ACM SIGSOFT International Symposium on
Software Testing and Analysis.

[4] Ryan Barnett. 2021. HTTP/2 Request Smuggling. Akamai Blog. https:
//www.akamai.com/blog/security/http-2-request-smulggling.

[5] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. 2005. Uniform Resource
Identifier (URI): Generic Syntax. https://datatracker.ietf .org/doc/html/rfc3986.

[6] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines.
In ACM Conference on Computer and Communications Security.

[7] Protocol Buffers. [n. d.]. Protocol Buffers - Google’s data interchange format.
Github Repository. https://github.com/protocolbuffers/protobuf.

[8] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern Pax-
son. 2016. Host of Troubles: Multiple Host Ambiguities in HTTP Implementations.
In ACM Conference on Computer and Communications Security.

[9] Cloudflare. [n. d.]. Configure cache by status code. Cloudflare Docs. https:
//developers.cloudflare.com/cache/how-to/configure-cache-status-code.

[10] Richard I. Cook. 1998. How Complex Systems Fail. https://
how.complexsystems.fail/.

[11] Evan Custodio. 2019. Mass account takeovers using HTTP Request Smuggling
on https://slackb.com/ to steal session cookies. https://hackerone.com/reports/
737140.

[12] Evan Custodio. 2020. Practical Attacks Using HTTP Request Smuggling by
@defparam. NahamCon. https://www.youtube.com/watch?v=3tpnuzFLU8g.

[13] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1497–1511.

[14] Envoy. 2023. HTTP connection manager (proto). envoyproxy.io. https:
//www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/
http_connection_manager/v3/http_connection_manager.proto#envoy-
v3-api-field-extensions-filters-network-http-connection-manager-v3-
httpconnectionmanager-merge-slashes.

[15] Fastly. 2022. Caching configuration best practices. Fastly Documentation. https:
//docs.fastly.com/en/guides/caching-best-practices.

[16] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. 1997. Hypertext Transfer Protocol – HTTP/1.1.
https://datatracker.ietf .org/doc/html/rfc2616.

[17] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Message Syntax and Routing. https://datatracker.ietf .org/doc/
html/rfc7230.

[18] Roy T. Fielding and Julian F. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. https://datatracker.ietf .org/doc/html/
rfc7231.

[19] Antonio Frighetto. 2019. Coverage-guided binary fuzzing with REVNG and
LLVM libfuzzer. (2019).

[20] Antonio Frighetto. 2020. Fuzzing binaries with LLVM’s libFuzzer and rev.ng.
REVNG Blog. https://rev.ng/blog/fuzzing-binaries.

[21] Google. [n. d.]. libprotobuf-mutator. Github Repository. https://github.com/
google/libprotobuf-mutator.

[22] Google. [n. d.]. Structure-Aware Fuzzing with libFuzzer. Github Repository. https:
//github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md.

[23] Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi, Tommaso Innocenti, Kaan
Onarlioglu, and Engin Kirda. 2022. {FRAMESHIFTER}: Security implications of
{HTTP/2-to-HTTP/1} conversion anomalies. In 31st USENIX Security Symposium
(USENIX Security 22). 1061–1075.

[24] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. 2021. T-
Reqs: HTTP Request Smuggling with Differential Fuzzing. In ACM Conference on
Computer and Communications Security.

[25] James Kettle. 2019. HTTP Desync Attacks: Request Smuggling Reborn. PortSwig-
ger Web Security Blog. https://portswigger.net/blog/http-desync-attacks-
request-smuggling-reborn.

[26] James Kettle. 2019. Stored XSS on https://paypal.com/signin via cache poisoning.
HackerOne. https://hackerone.com/reports/488147.

[27] James Kettle. 2021. HTTP/2: The Sequel is Always Worse. PortSwigger Web
Security Blog. https://portswigger.net/research/http2.

[28] Iustin Ladunca. 2020. Cache Key Normalization DoS. https://youst.in/posts/
cache-key-normalization-denial-of-service/.

[29] Iustin Ladunca. 2021. Cache Poisoning at Scale. https://youst.in/posts/cache-
poisoning-at-scale/.

[30] Nancy G. Leveson. 2011. Engineering a Safer World. The MIT Press, Cambridge,
MA, USA.

[31] libFuzzer. 2023. libFuzzer – a library for coverage-guided fuzz testing. LLVM.org.
https://llvm.org/docs/LibFuzzer.html.

[32] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. 2019. Your Cache
Has Fallen: Cache-Poisoned Denial-of-Service Attack. In ACM Conference on
Computer and Communications Security.

[33] Eric Pauley, Gang Tan, Danfeng Zhang, and Patrick McDaniel. 2022. Performant
binary fuzzing without source code using static instrumentation. In 2022 IEEE
Conference on Communications and Network Security (CNS). IEEE, 226–235.

[34] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D. Keromytis, and
Suman Jana. 2017. Nezha: Efficient Domain-Independent Differential Testing. In
IEEE Symposium on Security and Privacy.

246

https://techdocs.akamai.com/api-definitions/docs/caching
https://techdocs.akamai.com/api-definitions/docs/caching
https://techdocs.akamai.com/property-mgr/docs/strict-header-parsing
https://techdocs.akamai.com/property-mgr/docs/strict-header-parsing
https://www.akamai.com/blog/security/http-2-request-smulggling
https://www.akamai.com/blog/security/http-2-request-smulggling
https://datatracker.ietf.org/doc/html/rfc3986
https://github.com/protocolbuffers/protobuf
https://developers.cloudflare.com/cache/how-to/configure-cache-status-code
https://developers.cloudflare.com/cache/how-to/configure-cache-status-code
https://how.complexsystems.fail/
https://how.complexsystems.fail/
https://hackerone.com/reports/737140
https://hackerone.com/reports/737140
https://www.youtube.com/watch?v=3tpnuzFLU8g
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-merge-slashes
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-merge-slashes
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-merge-slashes
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-merge-slashes
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-merge-slashes
https://docs.fastly.com/en/guides/caching-best-practices
https://docs.fastly.com/en/guides/caching-best-practices
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://rev.ng/blog/fuzzing-binaries
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/blog/http-desync-attacks-request-smuggling-reborn
https://hackerone.com/reports/488147
https://portswigger.net/research/http2
https://youst.in/posts/cache-key-normalization-denial-of-service/
https://youst.in/posts/cache-key-normalization-denial-of-service/
https://youst.in/posts/cache-poisoning-at-scale/
https://youst.in/posts/cache-poisoning-at-scale/
https://llvm.org/docs/LibFuzzer.html

Gudifu: Guided Differential Fuzzing for

HTTP Request Parsing Discrepancies RAID 2024, September 30–October 02, 2024, Padua, Italy

[35] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNET:
A Greybox Fuzzer for Network Protocols. In IEEE International Conference on
Software Testing, Validation and Verification.

[36] Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: A Differential
Fuzzing Framework to Detect DPI Elusion Strategies For QUIC. In Annual Com-
puter Security Applications Conference.

[37] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and
Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots. In
European Conference on Computer Systems.

[38] Kaiwen Shen, Jianyu Lu, Yaru Yang, Jianjun Chen, Mingming Zhang, Haixin
Duan, Jia Zhang, and Xiaofeng Zheng. 2022. HDiff: A Semi-automatic Framework
for Discovering Semantic Gap Attack in HTTP Implementations. In IEEE/IFIP
International Conference on Dependable Systems and Networks.

[39] Michał Zalewski. 2023. american fuzzy lop. lcamtuf.coredump.cx website. https:
//lcamtuf .coredump.cx/afl/.

[40] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-
Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic Bugs in TCP Stacks
with Fuzzing. In USENIX Annual Technical Conference.

247

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Shared Input Corpus
	3.2 Fuzzer Instances
	3.3 Target Servers
	3.4 Echo Servers
	3.5 Request Database and Search Method

	4 Experimentation
	4.1 Configuring Servers
	4.2 Capturing Cacheable Responses

	5 Parsing Discrepancies
	5.1 Request Line Discrepancies
	5.2 Request Header Discrepancies
	5.3 Request Body Discrepancies
	5.4 Cacheable Responses

	6 Attacks
	6.1 Access Control Bypass
	6.2 Cache Poisoning Denial-of-Service
	6.3 HTTP Request Smuggling

	7 Comparison with Other Tools
	8 Discussion
	8.1 Limitations
	8.2 Potential Improvements
	8.3 Addressing Discrepancy Attacks
	8.4 Vendor Responses

	9 Conclusion
	Acknowledgments
	References

