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Abstract
Cross-Site Scripting (XSS) is one of the most prevalent vul-
nerabilities on the Web. While exploitation techniques are
publicly documented, to date there is no study of how fre-
quently each technique is used in the wild. In this paper, we
conduct a longitudinal study of 134 k reflected server XSS
exploits submitted to XSSED and OPENBUGBOUNTY, two
vulnerability databases collectively spanning a time period
of nearly ten years. We use a combination of static and dy-
namic analysis techniques to identify the portion of each
archived server response that contains the exploit, execute it
in a sandboxed analysis environment, and detect the exploita-
tion techniques used. We categorize the exploits based on the
exploitation techniques used and generate common exploit
patterns. We find that most exploits are relatively simple, but
there is a moderate trend of increased sophistication over time.
For example, as automated XSS defenses evolve, direct code
execution with <script> is declining in favour of indirect
execution triggered by event handlers in conjunction with
other tags, such as <svg onload. We release our annotated
data, enabling researchers to create diverse exploit samples
for model training or system evaluation.

1 Introduction

Vulnerability reward programmes have emerged as a way of
encouraging and coordinating the discovery and disclosure
of vulnerabilities by independent researchers [7, 18, 21]. As
a popular example, the commercial platform HackerOne [9]
partners with software vendors and administers bug bounty
programmes on their behalf. Non-commercial platforms such
as XSSED [6] and OPENBUGBOUNTY [16], which specialise
in Web vulnerabilities, are one-sided [18] in the sense that they
allow submissions of vulnerabilities affecting any website
instead of restricting them to partner organisations.

Bug bounty programmes and platforms have been the sub-
ject of a large number of studies, which to date have nearly
exclusively focused on the economics of vulnerability dis-
covery such as incentives and return on investment [7, 21], as

well as the user population, affected websites, patching delays,
and high-level categorisation of vulnerability types [18, 21].
However, little is known in terms of technical details about
the exploits submitted by users.

In this paper, we perform a longitudinal study of the exploit-
ation techniques used by the authors of reflected server XSS
exploits in XSSED and OPENBUGBOUNTY over a period
of nearly ten years. This required us to solve a number of
technical challenges. The exploits submitted to the two plat-
forms are not available in isolation, but must be extracted
from the archived request and server response. This is partic-
ularly difficult, given that we have no insight into the inner
workings of the web application, and no access to a com-
parable, “clean” server response without the exploit. To this
end, we design techniques to isolate the reflected exploit by
comparing the request and response data, and accounting for
server transformations such as encoding or escaping.

Once the attack string is isolated, we need to extract fea-
tures for exploitation techniques. Some techniques, such as
syntax tricks attempting to confuse filters in web apps and fire-
walls by exploiting a parsing disparity, are not visible when a
page is opened in a browser. We detect this class of techniques
statically and comprehensively validate our method.

Other features are visible only at runtime, such as call
stacks, or whether the injected code actually works. In fact,
many archived server responses contain multiple instances
of reflected code, but input sanitisation appears to be applied
inconsistently, causing some instances to execute while others
do not. We collect this information by dynamically executing
archived exploits. Often, exploits have environmental depend-
encies or require certain events to be triggered before they
can execute, thus we developed a sandboxed environment
with lightweight browser instrumentation that can simulate
different network conditions and user interaction.

For our analysis, we integrate the data collected by the
static and dynamic analysis methods. When the results of
both static and dynamic analysis are available, we detect the
exploitation techniques with 100 % true positive rate. Our
methodology enables us to perform a comprehensive longitud-
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inal study of 134 k reflected server XSS exploits. Surprisingly,
a large percentage of exploits, 65.0 % in XSSED and 11.7 %
in OPENBUGBOUNTY, use no technique beyond inserting
a <script> tag after possibly closing the previous tag, and
make no attempt to bypass filters.

We also analyse common exploit patterns, defined as a
collection of techniques used in combination. We find that
the most common pattern accounting for about half of all
exploits in XSSED is closing the previous tag and inserting a
<script> tag with the payload. Presumably due to increased
filtering of this tag, in the more recent submissions to OPEN-
BUGBOUNTY, we observe a trend of replacing the <script>
tag with <img> or <svg> tags and indirect code execution
using the onload and onerror event handlers.

Our analysis sheds light on XSS exploitation trends and
popular exploit patterns. We also discuss how exploitation
techniques evolve over time, as automated defenses are imple-
mented by modern browsers. To summarise, this paper makes
the following contributions:

• We demonstrate that it is possible to accurately identify
proof-of-concept exploits in archived web pages. We im-
plement a system to execute exploits and extract features
with a unified static and dynamic approach.

• We analyse ten years of reflected server XSS exploits to
quantify the use of various exploitation techniques.

• We show that there is only a moderate change in tech-
niques and sophistication despite the long time span,
supporting the hypothesis of an “endless” supply of low-
complexity vulnerabilities on the Web, and suggesting a
lack of incentives for users of the platforms to find and
contribute more sophisticated XSS vulnerabilities.

• We release the dataset [1] used in this paper.

2 Background

Cross-Site Scripting (XSS) is a class of attacks that consist in
injecting attacker-controlled JavaScript code into vulnerable
websites. The attack targets the visitors of a compromised
website. To the victim’s browser, the injected code appears
to originate from the compromised website, thus the Same
Origin Policy does not apply and the browser interprets the
code in the context of the website. Consequently, attackers
can exfiltrate sensitive information, or impersonate the victim
and initiate transactions such as purchases or money transfers.

This study focuses on reflected server XSS in which the
vulnerability arises from server-side templating and the inabil-
ity of the browser to distinguish the trusted template from the
untrusted user input. To prevent attacks, the developer must
escape sensitive characters in the user input. However, which
characters are sensitive and how they can be escaped depends
on the sink context. For example, inside a JavaScript string

context, quotes must be escaped as \", inside HTML tags as
the HTML entity &quot; and outside of HTML tags, they
do not have a special meaning. General-purpose server-side
programming languages typically do not escape user input
since they are unaware of the sink context. Furthermore, in
some cases developers may wish to allow certain types of
markup in user input, such as style-related tags in articles
or blog posts submitted by users. Unfortunately, developers
often omit input sanitisation entirely, use an incorrect type
of escaping, or implement custom sanitisation code that is
not sufficient to block the attacks. For example, developers
who would like to allow certain tags but not script may re-
move the string "script" from user input, but they may fail
to account for case differences (<ScRiPt>) or indirect exe-
cution through event handlers (onload="alert(1)"). Web
Application Firewalls are often implemented using regular
expressions and may be vulnerable to similar issues [4, 13].

Cross-Site Scripting exploits bugs in websites as opposed to
browsers. As such, XSS is not to be confused with JavaScript-
based attacks that exploit browser bugs to cause memory
corruption and gain code execution at the operating system
level. However, XSS could be used as a vehicle to inject such
types of payloads into websites. In this work, we do not study
such malicious payloads; rather, we focus on the tricks that
authors of XSS exploits use to bypass filters up to the point
where they gain script execution capabilities. The two datasets
that we use, XSSED and OPENBUGBOUNTY, contain only
benign proof-of-concept (PoC) payloads such as alert(1),
but exploits do differ in how they achieve code execution.

2.1 Vulnerability Rewards and Platforms

Bug bounty platforms provide a formalised way for bug
hunters and website operators to interact. Furthermore, they
often provide cash rewards for verified bug reports. Economic
aspects of vulnerability rewards have been studied extens-
ively, such as for Chrome and Firefox by Finifter et al. [7],
or for the HACKERONE and WOOYUN platforms by Zhao et
al. [21]. The arguably most well-known platform, HACKER-
ONE, operates vulnerability reward programmes on behalf of
other organisations. The platform is “closed" in the sense that
vulnerabilities can be submitted only for websites or software
developed by participating organisations. Furthermore, those
organisations are typically responsible for verifying vulner-
ability reports, determining the amount of a potential reward,
and deciding on whether to publish the vulnerability.

In contrast to closed commercial platforms, our research
uses data obtained from two open, non-profit bug bounty
websites specialised in XSS. In this model, users may sub-
mit exploits targeting any website. The first of the two plat-
forms, XSSED [6], was founded in 2007 and appears to be
largely dormant since 2012. The second platform, OPEN-
BUGBOUNTY [16] was launched in 2014 under the name
XSSposed, and is still active at the time of writing.
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2.2 Related Work

Prior studies on vulnerability reward programmes have fo-
cussed on economic considerations (e.g., [7, 18, 21]). Zhao et
al. [21] dedicated a small part of their study to the submitted
exploits, but these encompassed many different vulnerability
classes, and the analysis was restricted to a few high-level
metrics such as “severity” provided by the WOOYUN plat-
form. Furthermore, the authors noted that “Wooyun may ig-
nore vulnerabilities that are considered irrelevant or of very
low importance, such as many reflected XSS vulnerabilities.”
In their analysis of OPENBUGBOUNTY, Ruohonen and Al-
lodi [18] considered platform metrics such as patching delays
and user productivity. Instead of these general-purpose ex-
ploit or platform metrics, we conduct a deeper analysis of the
different techniques used specifically in reflected server XSS.

Cross-Site Scripting has been considered in a large body of
scholarly research, mostly from a vulnerability detection and
exploitation prevention perspective. However, we are aware of
only very few works that quantify the occurrence of different
XSS exploitation techniques. For example, while evaluating
their proposed XSS filter, Bates et al. [3] classified the sink
contexts of 145 random exploits from XSSED. Our findings
in Section 4.2 are in line with theirs, and provide additional
detail about unnecessary context escaping, and multiple or
non-executing reflections in server responses. Furthermore,
we work with archived server responses, whereas Bates et al.
could only consider live pages that were still vulnerable.

In DOM-based client XSS, several works [14,15,20] repor-
ted characteristics of exploitable data flows, such as the source
and sink types, and cognitive complexity. In our context of
reflected server XSS, data flows and transformations occur
in (hidden) server-side code, thus we need different methods.
Furthermore, the goal of the analysis was to characterise the
“root causes" of vulnerabilities. In contrast, we use human-
curated data sets to quantify different exploit techniques.

Closest to our work is a study by Scholte et al. [19] of
2,632 XSS and SQL injection attacks found in the National
Vulnerability Database. The authors measured the complex-
ity of XSS exploits using five static features such as having
encoded characters or event handlers. Scholte et al. found
that vulnerabilities were simple, and their complexity did not
increase. Our results confirm the trends reported in 2011. We
extend them in depth, scale, and time span by using a fifty
times larger data set, extracting five times more static features,
adding dynamic analysis, and characterising exploit authors.

Similar in spirit, but different in the covered environment,
are two studies analysing Java exploits [12] and malware [5].

3 Methodology

In this work, we quantify the techniques used by the authors
of XSS exploits archived in XSSED and OPENBUGBOUNTY.
This required us to solve many challenges such as locating

Exploit Extraction Exploit Execution

Static Feature Extraction Dynamic Feature Extraction

Data Integration and Filtering

XSSED OBB

Figure 1: Overview of our static and dynamic analysis system.

Database Date Range Authors Submissions Websites

XSSED 2007-01-24 – 2015-03-12 2,579 43,939 33,747
OBB 2014-06-18 – 2017-04-11 980 119,946 86,339

Table 1: Raw XSS data collected (before filtering).

attack strings embedded in HTML responses, triggering and
executing the attack in a controlled environment, and identi-
fying XSS techniques used. We address them by combining
static and dynamic analysis methods, as outlined in Figure 1.

3.1 Exploitation Techniques
Reflected server XSS exploits can use a range of techniques to
bypass incomplete input sanitisation and achieve code execu-
tion. Various cheatsheets [2,8,10,11] collect these techniques.
Our work models portable techniques in the sense that they
work in most modern browsers rather than in specific browsers
or versions. We also exclude techniques that we implemen-
ted based on the cheatsheets, but that appear rarely in our
datasets. On the other hand, we include additional techniques
that we observed while working with our datasets. Table 4
on page 10 lists all exploitation techniques considered in this
paper, grouped into several categories.

3.2 Data Collection
Our analysis of XSS exploits aims to cover a broad range of
techniques and study how they evolve over time. To do so, we
extracted all XSS exploits publicly disclosed on XSSED and
OPENBUGBOUNTY until April 2017, as shown in Table 1.
This represents the latest available dataset, as XSSED is now
largely dormant, and OPENBUGBOUNTY has implemented
anti-crawl measures. The operators of the databases claim that
all entries were confirmed to work at the time of submission.

3.3 Exploit String Extraction
XSSED and OPENBUGBOUNTY archive XSS vulnerabilities
by storing the request data (URL, cookies, POST data) and the
HTML page returned by the server. Therefore, first we must
isolate the attack string embedded in request and reponse.
Prior work found that nearly half of sampled XSSED entries
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had been fixed or the affected website was not reachable [3].
Instead, we extract XSS exploits by looking for reflected
strings that exist both in the request and the response.

Since nearly all exploits only show a message using the
methods alert(), prompt() or confirm(), these method
names typically appear in the URL. In case of obfuscation, the
URL contains other strings, such as eval() or related method
names. Thus, for the limited purpose of locating these pay-
loads, we search the request and response for these keywords.

To extract attack strings, we implemented a greedy heur-
istic that expands the matching range from the keyword to
the left and right as long as the character sequences match.
Servers can transform the inputs before reflecting them, such
as encoding characters, truncating or expanding the string.
Without knowledge of the server-side logic, we cannot solve
this issue in a generally sound way. However, we do support
the most common transformations, specifically HTML entity,
Unicode, URL, and certain cases of double URL encoding,
and our matching is case-insensitive. Additionally, we allow
up to two consecutive non-matching characters, provided that
there are more matching characters afterwards. Our validation
shows that this works well in the context of our dataset.

One server response may contain multiple matches when
one injected parameter is reflected multiple times, or when
exploits are injected into multiple parts of the URL. We ini-
tially match all reflection combinations, but eventually select
a single pair that has been confirmed to be functional, and is
unlikely to be a false positive (Sections 3.5 and 3.7).

3.4 Static Feature Extraction

Once the attack string has been isolated, we need to detect
how it achieves JavaScript code execution. Especially syntax-
based tricks such as whitespace or comment insertion, or non-
standard syntax are not visible from the JavaScript runtime, as
the browser parser converts the non-standard textual HTML
into a canonical DOM representation. Given that our feature
extraction operates on a previously known dataset, we imple-
ment it using regular expressions and iteratively refine and
validate our implementation through manual labelling.

The techniques we detect statically (marked G# and  in
Table 4, on page 10) include escaping from the injection sink
context by ending string literals or closing a tag, case tricks
such as <ScRiPt>, and using a slash instead of a space, as
in <svg/onload. Additionally, we extract features such as
event handlers so that we can combine them with dynamically
detected features to reduce false positives. Depending on the
technique, we make multiple attempts to match the respective
regular expression, such as before and after decoding encoded
sequences, or removing whitespace.

Submissions Messages TP / FP

XSSED OBB XSSED OBB

No Trigger 38,009 94,693 38,926 / 188 95,779 / 286

Mouse Move 289 3,959 288 / 5 3,994 / 15
Mouse Click 145 103 123 / 23 97 / 7
Network Error 0 4 0 / 0 4 / 0

Table 2: Exploits executed by triggering events.

3.5 Exploit Execution

Almost two thirds of archived server responses in XSSED
and OPENBUGBOUNTY contain multiple reflections of attack
strings. Some of them appear to be sanitised or truncated,
preventing execution. In order to extract XSS techniques only
from attack strings that execute, we need to run the exploits.

To execute exploits, we load the archived response pages
in Chrome and Firefox. We add instrumentation to detect
whether the exploit is working, and sandbox network traffic
by serving all requests from an isolated local proxy. As for the
static exploit string extraction, we leverage the fact that nearly
all exploits contain a simple payload showing a message with
alert(), prompt() or confirm(), and use the calling of any
such method as a sign for a successfully executed exploit.

When simply opened in our sandbox environment, many
pages do not result in the exploit being executed. In some
cases, exploits require user interaction. In other cases, ex-
ploits only execute when external resources such as images
or scripts are loaded successfully, or when resources fail to
load. Unfortunately, neither XSSED nor OPENBUGBOUNTY
archive these resources, thus we replace them with generic
versions. Our system attempts to execute each exploit in up
to four rounds, as summarised in Table 2. In the first round,
the proxy returns the archived page and then answers each
resource request with an empty response and the HTTP 200
OK status code. For exploits not successfully executed, in
the second round we move the mouse over all elements in
order to trigger user interaction event handlers, and wait for
ten seconds to allow delayed execution using setTimeout().
This results in 4.2 % additional executions in OPENBUG-
BOUNTY. In the third round, we click on all elements, and in
the fourth round, the proxy answers resource requests with
empty documents and the HTTP 404 Not Found status code
to trigger the onerror event.

During our attempts, we may accidentally trigger unre-
lated code in the page. When clicking a button, for instance,
the page may display an error message. To distinguish page-
related dialogues from alerts caused by injected exploit code,
we semi-automatically classify the displayed messages. Mes-
sages displayed by exploits are often very similar, such as
“XSSED” or “OBB,” or the name of the author. We manually
looked through the top 30 message texts in each database,
which account for 70.3 % of messages in XSSED, and 99.7 %
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in OPENBUGBOUNTY. We confirmed that 58 of the 60 mes-
sages were related to exploits. For the remaining messages,
we built a dictionary of attack-related keywords, such as the
names of exploit authors commonly appearing in our data.
When a message text contains none of these exploit keywords,
and is not part of the 58 most frequent messages labelled as
exploit-related, we assume it is a false positive and discard it.

For validation, we picked two random samples of 100
unique messages that were considered exploit-related and
not in the top 30. In XSSED, all sampled messages were con-
firmed based on the source code to originate from an injected
exploit. In OPENBUGBOUNTY, our sample had a 2 % false
positive rate. Yet, as OPENBUGBOUNTY contains only 324
distinct messages with attack keywords beyond the top 30, we
estimate a total of 7 distinct false positive messages, which
corresponds to 0.007 % of all message instances.

During our experiments, we found minimal differences
between Chrome and Firefox. Around 0.3 % of submissions
in XSSED, and 1.0 % in OPENBUGBOUNTY worked only in
Firefox. On the other hand, 2.4 % of XSSED, and 3.9 % of
OPENBUGBOUNTY worked only in Chrome. This disparity
is mainly due to technical differences in our instrumentation
that may prevent data extraction in corner cases such as pages
crashing the browser. Browser families also differ in how they
handle (partially) broken pages, and in which exploitation
techniques they “support.” Chrome executes more exploits
than Firefox, and returns richer metadata that we require to
combine static and dynamic features. When using Firefox,
the lack of metadata allows combining features for only 23 %
of OPENBUGBOUNTY submissions, as opposed to 83 % with
Chrome. For simplicity, we only report Chrome results.

3.6 Dynamic Feature Extraction

While executing exploits, our instrumentation detects the use
of certain exploitation techniques. For some, detection is only
practical at runtime, such as exploit code interacting with page
code, or assignment of the alert method to a variable and
subsequent calling of the variable. We also extract a number
of features in parallel to the static feature detection to reduce
false positives. This includes the use of obfuscation or quote
avoidance methods such as eval() or regular expressions.

From an implementation point of view, our browser exten-
sion injects a content script that intercepts calls to a range of
methods and property accesses. It logs the values and types
of parameters such as evaluated strings or message texts, and
records the stack trace of the call. We extract line numbers
and offsets to distinguish features detected in exploits from
detections in unrelated page functionality (Section 3.7).

Due to our choice of a light-weight browser instrumenta-
tion, we do not detect certain corner cases. These include ex-
ploit code in data: or javascript: URLs or an <iframe>,
use of innerHTML or outerHTML, and element creation us-
ing the DOM API document.createElement(). Some of

these limitations are due to incorrect line number and offset
values returned by the browser, which prevents us from com-
bining these dynamically detected features with their static
detection counterpart. Among all features, only page code
interaction (F6) is exclusively based on dynamic data. In a
random sample of 25 out of 145 exploits where this feature
was detected, we did not observe any false positives.

3.7 Data Integration and Filtering

We combine the data collected during the static and dynamic
analysis to address the shortcomings of each individual ap-
proach. By using only exploits that were detected both stat-
ically and dynamically, we exclude exploit reflections that
do not execute, or other false positives of static detection. By
restricting dynamic detections to source code ranges statically
detected as the attack string, we exclude false positives of
dynamic detection due to code unrelated to the exploit.

The static extraction returns byte ranges of the reflected
data. From the dynamic execution, we obtain stack traces
of method invocations with line number and offset values.
At a high level, integrating static and dynamic data means
checking whether the dynamic line number and offset are
within the static exploit range. Our implementation adds three
preparatory steps. First, we extract the character encoding
used by the browser so that we can correctly compare off-
sets involving multi-byte characters. Second, we normalise
endline characters in the server responses. Third, in several
special cases, the offsets returned by Chrome do not point
to the actual beginning of the respective statement but are
shifted by the length of a syntactical construct or point to the
end of the tag, and need to be adjusted accordingly.

Almost two thirds of server responses reflect the injected
exploit multiple times. When matching static and dynamic
data, we combine all pairs and select a single exploit to repres-
ent each HTML page. We choose as the representative exploit
one where the message is a known exploit text, and which is
the shortest string among the matches with the most frequent
set of exploit features detected on the page. Only 1.6 % of
submissions had more than one working reflection and more
than one unique feature set, thus in the vast majority of cases,
our selection does not make any difference.

Similarly to the exploits, we also combine features by re-
stricting them to cases where both the static and the dynamic
occurrence was observed. These are marked as  in Table 4.
We validated a subset of important features, shown in Table 3,
by labelling 25 random exploits from three detection categor-
ies: both static and dynamic data were combined (S∩D), only
static features (S−D), or only dynamic features (D−S) were
detected. Features with only static detection are either false
positives of static detection, or false negatives of dynamic
detection, and vice versa for features with only dynamic detec-
tion. The results show that our conservative approach resulted
in no false positives in feature detections. Detections made by
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S: static, D: dynamic S−D D−S S∩D

(% of all detections) % TN FN % TN FN % TP FP

I1: document.write 8.5 10 1 0.8 1 0 90.7 25 0
I2, I3: eval, setIv/To 11.5 24 1 1.8 9 0 86.7 25 0
O1: char. code to str. 1.2 25 0 0.0 0 1 98.8 25 0
O2: regular expr. 0.1 21 4 0.3 24 1 99.6 25 0

True/false negatives/positives in samples of 25 detections (if available).

Table 3: Validation of Static and Dynamic feature extraction.

only one type of analysis sometimes contain false negatives,
but the combination of static and dynamic analysis results in
perfect accuracy.

3.8 Validation
We successfully combine static and dynamic data for 36,229
XSS submissions in XSSED (82 %), and 97,677 XSS submis-
sions in OPENBUGBOUNTY (83 %). In the remaining 17.1 %
of submissions, we cannot match a statically extracted attack
string in the server response with a dynamically observed at-
tack message, thus we exclude these exploit submissions from
further analysis. To further investigate, we manually labelled
a random sample of 1,000 such cases. The most frequent
reason for exclusion was the inability to execute the exploit
(37.7 % of cases, or 6.4 % of the entire dataset). These cases
were apparently caused by the use of nonstandard syntax not
supported by Chrome, missing dependencies or event triggers,
or the exploit not executing before our 10 second timeout.
Exploits that fingerprint the environment and stop execution
to prevent analysis would also fall into this category, but we
did not observe any example in our data. Another 22.1 %
of excluded submissions in the two databases contained in-
complete data, or an unsuitable format such as screenshot
submissions that we could not process. Around 0.3 % of ex-
cluded submissions were false negatives due to line number
and offset matching issues. The remaining 39.9 % of excluded
submissions (6.8 % of the entire dataset) were attack types
that our analysis framework does not support. We do not fur-
ther analyse exploits injecting references to remote JavaScript
files (2.9 % of the entire dataset), as it is difficult to distin-
guish benign from malicious script URLs, and Chrome returns
line numbers that are ambiguous when multiple such remote
scripts are injected into the same page. Similar line number
issues exist with exploits contained in data: or javascript:
URIs (found in 0.4 % of all submissions). Around 0.2 % of
the exploits redirect to a different page, and 0.9 % inject text
into the HTML page instead of showing a message, causing
their exclusion. Furthermore, we exclude exploits that are not
reflected server XSS, as they imply the absence of the exploit
from the URL (stored server XSS: 0.05 % of all submissions)
or from the server response (DOM-based client XSS: 1.9 %),
thus preventing us from isolating the attack string. Lastly, we
exclude 0.09 % of the dataset because these submissions ap-

pear to involve techniques unrelated to HTML and JavaScript,
such as SQL injection.

3.9 Limitations
Our datasets contain potential biases due to their open nature.
The data may be biased towards simpler exploits, favour the
use of identical exploits on multiple websites, and result in
fewer submissions per website while covering several orders
of magnitude more websites than closed platforms. Further-
more, we may under-report exploits for sites that operate their
own (cash-based) bug bounty programme, as users may be
motivated to submit their findings directly to that programme
instead of reporting them to XSSED or OPENBUGBOUNTY.
Because only 10.1 % and 13.3 % of websites in XSSED and
OPENBUGBOUNTY, respectively, have multiple submitted
exploits, our dataset should not be used to derive findings
about the security posture of individual websites. There is no
guarantee that users find vulnerabilities on a given website,
that they submit them to one of the two databases covered
in our study, and that the submitted exploit is as simple as
the vulnerability allows. These limitations notwithstanding,
we believe that our dataset (134k exploits submitted by 3k
authors) gives us a unique insight into the XSS techniques
used by a wide range of security testers.

Our method has some limitations. The detection being
based on keywords, we might fail to locate exploits when
none of these keywords is used in the exploit. Since we ex-
pect that every database entry contains an exploit, we can
estimate the false negative rate through manual validation
of entries without a match (Section 3.8). Our approach does
not support “split” exploits with multiple cooperating parts
that are injected separately, and would only detect the part
with the keyword. Furthermore, static features fail to indic-
ate techniques hidden under an obfuscation layer. However,
our datasets contain only a few hundred cases of obfusca-
tion, and our dynamic analysis lets us gain insight into the
de-obfuscated strings. Out of the twelve static-only features
that we validated, only the detection of HTML tag attributes
other than src had any false positives (11 %), but we do not
consider it an exploitation technique and only use it to comple-
ment our analysis. While such shortcomings are unacceptable
for general-purpose attack detection, in our case we are only
concerned with post-hoc analysis of two datasets, and we
comprehensively validate our method.

4 Analysis

To provide some context, we start our analysis with an over-
view of the two exploit databases XSSED and OPENBUG-
BOUNTY. We report all results relative to the 133.9 k exploits
(82.9% of raw submissions) for which our analysis framework
successfully extracted and combined static and dynamic data.
The XSSED data contains 36.2 k exploits for 28.7 k websites
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domains, suggesting a large supply of vul-
nerable domains on the Web.
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Figure 3: Quarterly distribution of the popularity of domains affected by exploit
submissions (XSSED left, OPENBUGBOUNTY right). Domains grouped by pop-
ularity according to their Alexa ranks; the last interval includes unranked domains.
More than half of submissions are for unpopular websites. The rank interval distri-
bution is almost uniform over time, illustrating that XSS vulnerabilities continue
to be found even on the most popular websites.

submitted between January 2007 and March 2015, although
the site appears to have been mostly dormant since May 2012,
as there have been fewer than ten monthly submissions since
then. Our OPENBUGBOUNTY dataset covers June 2014 to
April 2017 with 97.7 k submissions for 72.6 k websites. (We
cannot practically extract newer submissions from OPENBUG-
BOUNTY due to newly implemented anti-crawling measures.)

The exploits in XSSED were submitted by 2.2 k users,
whereas the much larger OPENBUGBOUNTY had only 883
active authors and 244 anonymous submissions. The dataset
is heavily biased towards highly active users. The top 10 users
accounted for 28.6 % of submissions in XSSED, and 38.3 %
in OPENBUGBOUNTY. In contrast, around half of users in
XSSED, and a third of users in OPENBUGBOUNTY, submit-
ted only a single exploit. The dominance by a few active
users implies that decisions made by these users, including
their choice of exploits and their period of activity, can skew
averages in our data. To account for this effect, we analyse
aggregates not only in terms of submission quantities, but also
by how many distinct authors submitted such exploits.

If submitters use automated tools, which appears to be the
case for at least the most prolific users, there is a likely bias
towards more shallow vulnerabilities, depending on the capab-
ilities of these tools, and the possibility that submitted exploits
contain techniques that are not necessary for the exploit to
work on the respective website. Consequently, our analysis
of exploits and their sophistication is to be read primarily
as trends among exploit submitters, and as only loose upper
bounds on the complexity of the website’s vulnerability.

4.1 Affected Websites

The submitted exploits refer to 28,671 unique registered do-
mains (below the public suffix) in XSSED and 72,607 in

OPENBUGBOUNTY. Most domains receive a single submis-
sion; only 10.1 % and 13.3 % of them, respectively, appear in
multiple vulnerability entries. These are often submitted in
batches, as 37.2 % of delays between consecutive submissions
for the same domain are below one day in XSSED, and 43.7 %
in OPENBUGBOUNTY. Figure 2 shows that over time, total
exploit submissions in both databases increase only slightly
faster than the unique number of websites, suggesting that
there is an “endless” supply of new websites with XSS vul-
nerabilities. In aggregate, the users submitting exploits appear
to favour breadth over depth. The dataset is thus unsuitable
for analysing the security posture of individual websites.

Since exploit authors are free in their choice of websites
to scrutinise for XSS vulnerabilities, and we do not know
about unsuccessful attempts, our data does not allow conclu-
sions about vulnerability rates of websites. In the following,
we study vulnerability reports according to the popularity of
the affected website. We utilise the websites’ (presumably
contemporaneous) Alexa ranks reported in the submissions,
and group them into exponentially increasing intervals. More
popular sites tend to be overrepresented in our data, as users
submitted vulnerabilities for 38 % of the 100 most popular
websites in XSSED (40 % in OPENBUGBOUNTY), but only
3.2 % (8.9 %) of the 90 k websites ranked in the range 10 k –
100 k according to Alexa. As shown in Figure 3, these propor-
tions remain somewhat stable over time. This suggests that
the ability of exploit authors to find XSS vulnerabilities even
in the most popular websites has not changed significantly.

4.2 Sink Analysis

Injected exploits can be reflected by the website in dif-
ferent parts of the server response. Since reflection vul-
nerabilities often arise from server-side templating with
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user inputs, such reflection sinks could for example appear
between HTML tags <div>{sink}</div>, in an HTML
attribute <div name="{sink}", or in a JavaScript context
<script>var name="{sink}";. We manually labelled two
random samples of 250 submissions from each of the two
databases to determine the sink context of the exploit reflec-
tion. Nearly all sinks appear in an HTML-related context.
In both databases, sinks are located between HTML tags, or
inside HTML tag attribute values at comparable rates, with
52 % and 46.4 % in XSSED, and 44.4 % and 47.2 % in OPEN-
BUGBOUNTY, respectively. JavaScript sinks make up only
1.2 % in XSSED and 7.2 % in OPENBUGBOUNTY.

Depending on the sink context, the exploit may need to
escape from the current context and set up a new context
suitable for the payload [14]. If the payload is alert(1) and
the sink is located inside the value of an HTML attribute such
as <div name="{sink}", the payload needs to terminate the
string, and create an event handler attribute that can accept
the JavaScript payload, e.g., " onmouseover=alert(1). Al-
ternatively, it can close the tag, and then inject a script tag
with the payload, such as "><script>alert(1)</script>.
When exploit authors manually craft their attack string, they
can customise it using their understanding of the website. For
example, only a restricted set of tags can trigger the onload
event handler, whereas it would have no effect in the other
tags. Alternatively, exploit authors can use generic escape
sequences that work in a variety of different sink types in
order to make their exploit more versatile. In the same two
random samples, 50.8 % of exploits in XSSED and 39.6 % in
OPENBUGBOUNTY did not need any escaping, as the sink
already had a JavaScript or HTML between-tag context suit-
able for the payload. However, 26.4 % of sampled XSSED
exploits (OPENBUGBOUNTY: 28 %) contain an escaping se-
quence even though it is not necessary. This suggests that
our datasets contain a significant fraction of general-purpose
exploits. Around 41.6 % of sampled XSSED exploits, and
50.4 % in OPENBUGBOUNTY, contain an escape sequence
that is both necessary and minimal. The remainder contains
either no escaping, or additional unnecessary escaping.

Many websites reflect injected exploits more than once.
In XSSED and OPENBUGBOUNTY, 37.0 % and 32.5 % of
submissions in our successfully merged dataset have more
than one working exploit reflection. This typically occurs due
to one URL parameter being used in multiple places in the
server-side template, but there are also a few submissions
where different exploits are injected into multiple paramet-
ers. In the manually labelled sample, the multiple working
reflections occur in 45.2 % for XSSED and 30.0 % for OPEN-
BUGBOUNTY. These can be further divided into 32.4 % of the
XSSED sample, and 24.4 % of OPENBUGBOUNTY, where
the exploit is reflected multiple times in sink contexts of the
same type, and 12.8 % and 5.6 %, respectively, with multiple
reflections in different sink contexts. An exploit with correct
escaping for one context can also appear in a different context

where the escaping sequence may be ineffective.
To that end, it is worth noting that 44.7 % of all XSSED

submissions, and 52.9 % of OPENBUGBOUNTY contain at
least one additional potential exploit reflection where the ex-
ploit does not execute. This data is to be seen as a coarse
approximation, as it contains false positives that are not actual
exploit reflections, but matches between the request data and
similar but potentially unrelated page code. For this reason,
outside of this section, we only analyse executing reflections,
where our dynamic analysis rules out such false positives.
Overall, 62.1 % of submissions in XSSED, and 63.4 % in
OPENBUGBOUNTY, contain multiple reflections, with at least
one working and potentially more that do not. In addition to
exploits being reflected in a sink context for which the escap-
ing sequence is ineffective, another possible explanation for
reflections not executing are server-side transformations.

A typical server-side transformation is encoding of sensit-
ive characters to prevent XSS. In exploit reflections that do
execute, few special characters such as < or > for tags, and " or
' for attribute values or strings are HTML entity encoded (i.e.,
&lt; &#60; or &#x3c;) – less than 0.1 % for angled brack-
ets, and no more than 0.25 % for quotes in either database.
In reflections that do not execute, the share of such encod-
ing is significantly higher, with 7.3 % of these reflections in
XSSED containing HTML-encoded angled brackets (OBB:
8.7 %), and 6.0 % (8.0 %) containing encoded quotes. HTML-
encoding of alphanumeric characters is close to zero in either
case. Since many server responses contain both working and
non-working reflections, vulnerable applications appear to
sanitise some user input, but inconsistently.

Some reflections appear to be mirroring the full request
URL instead of a single request parameter. Around 6.4 % of
submissions in XSSED and 15.1 % in OPENBUGBOUNTY
contain at least one URL reflection, and 2.7 % and 4.4 %
of submissions, respectively, contain at least one such URL
reflection that executes. Similar to HTML encoding, URL
reflections that execute injected exploits rarely contain any
URL-encoded characters at all (XSSED: 3.6 %, OPENBUG-
BOUNTY: 0.9 %), whereas non-executing URL reflections do
(81.5 % in XSSED and 73.0 % in OPENBUGBOUNTY).

Other factors that might prevent execution of an injected
exploit, which we do not examine here, include an incompat-
ible sink context, other types of encoding or escaping, and
more complex server transformations such as substrings.

4.3 Exploit Analysis

Nearly all exploit submissions contain simple proof-of-
concept payloads showing a JavaScript dialogue with a mes-
sage. In XSSED, the earlier dataset covering five years since
2007, 99.7 % of all submissions use alert(). However, the
prevalence of alert() appears to be decreasing over time in
favour of prompt(). The former is used in 52.4 % of OPEN-
BUGBOUNTY submissions, the latter in 40.7 %, and 7.6 %
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use confirm(). These numbers may be heavily dependent
on the behaviour of a few very active users, as 86.1 % of all
authors in OPENBUGBOUNTY submit at least one exploit
with alert(), and the fraction of active authors with at least
one such exploit remains over 77.4 % in each quarter.

4.3.1 Overview of Exploitation Techniques

We group exploitation techniques into five categories, as
shown in Table 4: Context (Escaping and Creation), Syn-
tax Confusion, String Obfuscation & Quote Avoidance, Con-
trol Flow Modification, and String Interpretation. Each cat-
egory corresponds to a specific goal of exploit authors,
such as bypassing (incomplete) server-side sanitisation, or
setting up a context where JavaScript code can be ex-
ecuted. The techniques within each category are alternat-
ive means of achieving that goal. Exploits might use mul-
tiple exploitation techniques at once. Very few submissions
(17.3 % in XSSED, 3.8 % in OPENBUGBOUNTY) use no
special technique at all; they are simple exploits such as
<script>alert(1)</script>. The most common category
is context escaping and creation with 75.5 % of submissions
in XSSED, and 83.8 % in OPENBUGBOUNTY, most likely
because techniques of this category are often needed to set up
the proper execution context for the exploit, depending on the
sink type. The remaining categories appear in only a small
fraction of exploits in the early XSSED, but become more
popular in the later OPENBUGBOUNTY. As an illustration,
67.6 % of submissions in XSSED use no technique other than
possible context escaping and creation, showing that older
exploits tend to be relatively simple. In OPENBUGBOUNTY,
this percentage is only 15.6 % of submissions, as some tech-
niques gained popularity and more authors have submitted at
least one exploit with a technique from the other categories.

While categories such as control flow modification and syn-
tax confusion have an upwards trend in OPENBUGBOUNTY,
both in terms of submissions and authors, the string inter-
pretation category remains rare, appearing in less than 1 %
of submissions in either database, and used by only 1.9 %
of XSSED and 5.0 % of OPENBUGBOUNTY authors. In the
following, we look into each category in more detail.

4.3.2 Context (Escaping and Creation)

Depending on the sink context (Section 4.2), exploits need
to escape from the current context and set up their own in
which the payload can run. In our two datasets, most exploits
(73.8%̇ in XSSED, and 77.6 % in OPENBUGBOUNTY) close
the previous tag, escaping to a context where new HTML
tags can be inserted (e.g., ><script>, C3 in Table 4). Only
a few exploits escape from an HTML attribute but remain
inside the tag to insert an event handler, such as " onload=
(C4 in Table 4, 1.1 % in XSSED and 3.1 % in OPENBUG-
BOUNTY). Interestingly, though, a much higher fraction of
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Figure 4: Quarterly tag and event handler market share (in
terms of exploit submissions) in OPENBUGBOUNTY. Script
tags decline in favour of alternative tags with event handlers.

authors, 20.4 % in OPENBUGBOUNTY, have submitted one
such exploit at least once. Even fewer exploits insert their
dialogue-based payload directly into a JavaScript context by
possibly terminating a string and chaining the statement with
; or an operator such as + (C5 in Table 4, 0.9 % in XSSED
and 1.8 % in OPENBUGBOUNTY). While the latter finding is
probably due to JavaScript sinks being much less common in
our datasets than HTML sinks, the dominance of HTML tag
escaping over remaining inside the tag is more likely attrib-
uted to preferences of exploit authors, as both types of HTML
sinks are similarly common.

As most exploits close the previous tag, they must in-
sert a new tag in order to be able to execute the payload.
Indeed, 98 % of exploits in XSSED, and 93.5 % in OPEN-
BUGBOUNTY contain at least one tag. In the older XSSED
dataset, with 95.6 % of submissions, this is nearly always a
<script> tag. In the more recent OPENBUGBOUNTY, this
tag is found in an average of only 26.8 % of submissions. As
Figure 4 shows, its use declined from 87.1 % of submissions
in the second quarter of 2014 to 21.7 % in the first quarter
of 2017. Author numbers similarly declined from 100 % to
65 % submitting at least one exploit with a <script> tag in a
quarter. While barely used at all in the beginning of OPEN-
BUGBOUNTY, <svg> and <img> tags have become more
popular, with an overall use in 45.6 % and 18.5 % of exploits,
respectively. Interestingly, many of these <svg> submissions
appear to originate from a smaller set of users, as only 34.8 %
of authors have ever submitted such an exploit. In the case
of <img>, the trend is opposite. The fewer submissions were
made by a larger 49.3 % of authors. Presumably, alternative
tag names can circumvent filtering in websites. They appear
to be used in combination with event handlers, which we
investigate in Section 4.3.5.
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Table 4: Detected Exploitation Techniques by Category.
(G# static, H# dynamic,  combined detection methodology; percentages for XSSED / OPENBUGBOUNTY)

Context (Escaping and Creation)

Technique Example Detection Submissions Authors

C1 HTML comment --><script>alert(1)</script> G# 2.4 % / 10.5 % 9.2 % / 21.7 %
C2 JavaScript comment /*/* */prompt(1)// G# 0.5 % / 3.3 % 2.7 % / 12.9 %
C3 HTML tag escape and tag insertion "><script>alert(1)</script> G# 73.8 % / 77.6 % 66.7 % / 80.7 %
C4 HTML attribute escape and event handler " autofocus onfocus=alert(1) G# 1.1 % / 3.1 % 5.6 % / 20.4 %
C5 chaining onto prior JavaScript expression "-alert(1) or ;prompt(1) G# 0.9 % / 1.8 % 5.0 % / 14.4 %

(any in category) 75.5 % / 83.8 % 68.6 % / 83.6 %

Syntax Confusion

Technique Example Detection Submissions Authors

S1 extraneous parentheses (alert)(1) G# 0.0 % / 0.3 % 0.0 % / 1.8 %
S2 mixed case <scRipT>alert(1)</scRipT> G# 4.9 % / 4.4 % 8.8 % / 19.8 %
S3 JavaScript encoding (uni, hex, oct) \u0061lert(1) or top["\x61lert"](1) G# 0.0 % / 0.1 % 0.1 % / 2.3 %
S4 malformed img tag <img """><script>alert(1)</script>"> G# 0.2 % / 0.2 % 0.6 % / 1.6 %
S5 whitespace characters <svg%0Aonload%20= alert(1)> G# 0.0 % / 0.0 % 0.1 % / 0.7 %
S6 slash separator instead of space <body/onpageshow=alert(1)> G# 0.1 % / 42.8 % 0.1 % / 31.7 %
S7 multiple brackets (tag parsing confusion) <<script>alert(1)<</script> G# 8.2 % / 1.7 % 5.8 % / 8.8 %

(any in category) 13.0 % / 47.8 % 14.2 % / 39.7 %

String Obfuscation & Quote Avoidance

Technique Example Detection Submissions Authors

O1 character code to string alert(String.fromCharCode(88,83,83))  4.5 % / 3.7 % 11.1 % / 11.7 %
O2 regular expression literal prompt(/XSS/)  13.7 % / 65.1 % 16.7 % / 62.8 %
O3 base64 encoding alert(atob("WFNT"))  0.0 % / 0.1 % 0.0 % / 0.6 %
O4 backtick prompt`XSS` G# 0.0 % / 2.4 % 0.1 % / 8.3 %

(any in category) 18.2 % / 71.1 % 25.0 % / 67.7 %

Control Flow Modification

Technique Example Detection Submissions Authors

F1 automatically triggered events <svg onload=alert(1)>  1.2 % / 48.2 % 5.9 % / 38.1 %
F2 exploit-triggered events <input autofocus onfocus=alert(1)>  1.2 % / 20.8 % 3.6 % / 50.6 %
F3 user interaction events onmouseover=prompt(1)  1.0 % / 1.7 % 5.1 % / 16.9 %
F4 dialogue assignment to variable a=alert;a(1)  0.6 % / 0.1 % 0.7 % / 2.3 %
F5 throw exception window.onerror=alert;throw/1/  0.0 % / 0.2 % 0.0 % / 1.6 %
F6 page code interaction exploit invoked by existing code in the page (call stack) H# 0.0 % / 0.1 % 0.3 % / 4.2 %

(any in category) 4.1 % / 70.8 % 11.3 % / 67.7 %

String Interpretation

Technique Example Detection Submissions Authors

I1 document.write document.write("<script>alert(1)</script>") 0.1 % / 0.1 % 0.8 % / 0.5 %
I2 eval eval("alert(1)")  0.7 % / 0.2 % 1.3 % / 2.9 %
I3 setInterval/setTimeout setTimeout("alert(1)", 20000)  0.0 % / 0.0 % 0.0 % / 0.2 %
I4 top/window key access top["alert"](1) G# 0.0 % / 0.1 % 0.0 % / 1.5 %

(any in category) 0.8 % / 0.4 % 1.7 % / 4.5 %

Summary

Technique Example Submissions Authors

(no technique used at all) <script>alert(1)</script> 17.3 % / 3.8 % 50.7 % / 42.2 %
(no technique or Context Creation) "><script>alert(1)</script> 67.6 % / 15.6 % 84.0 % / 61.4 %
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Figure 5: Correlation matrix of exploitation techniques and selected tags and attributes for (a) XSSED and (b) OPENBUGBOUNTY.
Use of <script> is negatively correlated with most other techniques, meaning they are used alternatively. The popular exploit
pattern <img src=# onerror> is visible as the pairwise correlation between <img>, src, and F2. Rarely used techniques such
as I1 and O3, or I2 and F4, may be correlated because most uses occur in similar submissions by the same author.

4.3.3 Syntax Confusion

Under Syntax Confusion, we consider techniques using non-
standard or intentionally “confusing” syntax that is tolerated
by browsers, but not understood by web application filters
and their parsers. Only three techniques of this category see
non-negligible use in the two exploit databases. In OPEN-
BUGBOUNTY, 42.8 % of submissions use a slash instead of
a space (S6 in Table 4; <svg/onload); this is mostly due to
its use in a frequently submitted exploit pattern (Section 4.4).
The slash technique is barely used in the older XSSED. On
the other hand, using multiple angled brackets in an appar-
ent attempt to confuse simple filter parsers (S7 in Table 4;
<<script>) is most popular in XSSED with 8.2 % of sub-
missions. Both databases see a low but persistent use of mixed
case tag names or event handlers (S2 in Table 4; <scRipT>).
Other syntax confusion techniques, such as JavaScript source
code character encodings (S3 in Table 4; \u0061lert(1)) or
whitespace characters (S5; <svg%0Aonload), appear in very
few submissions.

4.3.4 String Obfuscation & Quote Avoidance

In this category, we group obfuscation using built-in Java-
Script methods to decode character code sequences or base64
strings containing potentially filtered keywords, and use of
regular expression literals or backticks to avoid injecting
quotes and/or parentheses. The regular expression technique

(O2 in Table 4; alert(/message/)) is used in a majority of
OPENBUGBOUNTY submissions, but much less in XSSED.
The three remaining techniques occur in small percentages of
exploits. Two of them, character code sequence decoding (O1
in Table 4) and backticks (O4 in Table 4; alert`message`),
are known to a larger fraction of authors, but used in fewer
submissions overall.

4.3.5 Control Flow Modification

Control flow modification techniques mostly avoid straight-
forward use of potentially filtered <script> tags in favour
of alternative ways of executing code. None of them is used
widely in XSSED, but automatically triggered event handlers
(F1 in Table 4) can be found in almost half (48.2 %) of OPEN-
BUGBOUNTY submissions. The most frequently used event
handler of this category is onload (47.7 % of OPENBUG-
BOUNTY submissions, 38.1 % of authors). Other event hand-
lers can be triggered automatically if the exploit contains the
appropriate setup (F2 in Table 4). Among those, we observe
onerror together with an invalid URL (18.7,% of submis-
sions, 48.6 % of authors), and onfocus, which commonly co-
occurs with the autofocus attribute (2.1 % of submissions,
12.2 % of authors). Comparing the submission to author per-
centages, onload appears to be used by disproportionately act-
ive submitters, whereas onerror is known to more users, but
submitted less frequently. OPENBUGBOUNTY exploits with
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XSSED

Rank Techniques Example Submissions Authors

1 1 C3 "><script>alert(1)</script> 49.0 % 53.2 %
2 2 (none) <script>alert(1)</script> 17.3 % 50.7 %
3 3 C3, O2 "><script>alert(/XSS/)</script> 7.8 % 11.0 %
4 C3, S7 "><script>alert(1)</script>> 7.3 % 3.8 %
5 4 O2 <script>alert(/XSS/)</script> 3.4 % 8.0 %

5 C3, S2 "><ScRipt>alert(1)</sCripT> 2.9 % 5.4 %

OPENBUGBOUNTY

Rank Techniques Example Submissions Authors

1 C3, S6, F1, O2 "><svg/onload=prompt(/XSS/)> 30.9 % 18.5 %
2 3 C3, F2, O2 "><img src=x onerror=prompt(/XSS/)> 9.6 % 27.7 %
3 1 C3 "><script>alert(1)</script> 8.5 % 42.1 %
4 4 C3, O2 "><script>alert(/XSS/)</script> 4.7 % 26.0 %
5 2 (none) <script>alert(1)</script> 3.8 % 42.1 %

5 F2, O2 <img src=x onerror=prompt(/XSS/)> 2.7 % 23.4 %

Table 5: Most common exploit patterns (ordered by submissions; rank for author use in second column).

event handlers that require user interaction (F3 in Table 4) are
dominated by onmouseover (1.5 % of submissions, 14.5 %
of authors) and onmousemove (0.1 % of submissions, 2.0 %
of authors).

The most frequent combinations of tags and event handlers
in OPENBUGBOUNTY are <svg> with onload (45.1 % of
submissions), <img with onerror (18.0 %), <iframe> with
onload (1.2 %), <body> with onload (1.1 %), and many ad-
ditional combinations each used in fewer than 1 % of submis-
sions. As shown in Figure 4, event handlers in OPENBUG-
BOUNTY have not always been equally popular. Rather, their
rise coincides with a decline in the use of <script> tags,
which are more likely to be filtered than the more innocuous-
looking <svg> or <img> tags. Direct code execution with
<script> tags appears to be replaced by indirect execution
using a combination of alternative tags and event handlers.

We also detect technically interesting techniques, such as
interleaving exploit code so that it will be called by existing
page code (F6 in Table 4), but they are observed rarely.

4.3.6 String Interpretation

Code and markup string interpretation methods such as
eval() and document.write() could be used for custom
exploit obfuscation. Our analysis of the 491 strings passed to
these methods revealed only 9 additional instances of tech-
niques that were not already visible during the static analysis.
In the two databases, string interpretation methods appear to
be used as proof-of-concept exploits rather than for actual ob-
fuscation. Overall, the use of string interpretation techniques
is very low, both in terms of submissions and authors. The
most frequent technique is eval() (I2 in Table 4) with 0.7 %
of submissions in XSSED, and 0.2 % in OPENBUGBOUNTY
(1.3 % and 2.9 % of authors, respectively).

4.4 Exploit Patterns

Many exploitation techniques co-occur in characteristic com-
binations. (A correlation matrix is shown in Figure 5.) This
suggests that authors may be using common patterns or tem-
plates for exploits. An interesting question is whether users
submit similar exploits. To this end, we do not consider string
equality to be a useful metric, as two exploits displaying dif-
ferent messages may be identical from a technical point of
view, even though their string representation differs. Instead,
we cluster submissions by the set of techniques (in Table 4)
that are used in the exploit. We do not distinguish whether ex-
ploits use alert() or prompt(), do not consider tag names,
and we only make a difference between three classes of event
handlers. This level of abstraction is intended to balance ro-
bustness against minor modifications that do not result in a
different control flow, yet reflect the author’s use of exploita-
tion techniques such as syntax tricks.

Our approach results in 178 distinct exploit patterns in
XSSED, out of which 60.1 % are submitted at least twice
and 51.7 % are used by at least two authors. In OPENBUG-
BOUNTY, we detect 484 exploit patterns, with 65.9 % used
multiple times and 54.3 % used by multiple authors. For com-
parison, exact string matching finds 15,567 and 31,337 unique
exploit strings, with only 13.5 % and 12.6 % of them used
more than once (2.9 % and 3.4 % used by multiple authors).

The ten most frequent patterns account for 92 % of all
submissions in XSSED, and 69.9 % in OPENBUGBOUNTY.
Out of all authors, 93.8 % in XSSED, and 85.4 % in OPEN-
BUGBOUNTY, have submitted at least one exploit based
on one of these top ten patterns. Example string repres-
entations of these patterns are shown in Table 5. An ex-
ample for the most frequently submitted pattern in XSSED
is "><script>alert("XSS")</script>; it accounts for
49.0 % of all submissions and is used by 53.2 % of users. The
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same pattern, or its variant without tag closing, is also the most
popular in OPENBUGBOUNTY when considering the number
of authors who have submitted it at least once. However, both
patterns together account for only 12.3 % of total submissions.
The most frequently submitted OPENBUGBOUNTY pattern is
"><svg/onload=prompt(/XSS/)>, adding space and quote
avoidance, and indirect code execution using an automatically
triggered event handler. It accounts for 31.3 % of all submis-
sions, but is used by only 19.1 % of users, which implies that
these participants are disproportionately active.

4.5 Findings and Implications

We summarise below the main findings and implications of
our analysis.

• Roughly half of submissions in both databases contain
at least one non-executable input reflection in addition
to the working exploit. Web developers may be aware of
the need for input sanitisation, but apply it inconsistently.

• The older XSSED contains 67.6 % submissions with no
particular exploitation technique at all or just context
escaping, whereas almost half in the newer OPENBUG-
BOUNTY use automatically triggering event handlers.
This trend away from direct execution using injected
script tags towards indirect execution using non-script
tags is presumably to circumvent simple input filters.

• Some techniques, such as using a slash instead of a space
for separation <svg/onload, or using a regular expres-
sion instead of quotes alert(/message/), are frequent
in large part because a few submitters use them in their
large bulk submissions. Especially OPENBUGBOUNTY
is dominated by a small number of very active users,
likely due to automation. The choices made by these
users have an outsize effect on aggregate results when it
comes to the prevalence of exploitation techniques.

• Many vulnerabilities appear to be detected using auto-
mated tools, as evidenced by large bulk submissions and
general-purpose exploits that include unnecessary con-
text escaping. If website operators proactively used sim-
ilar tools to test their own websites, they might be able to
prevent a large number of the submitted vulnerabilities.

• Users appear to favour breadth by covering new websites
more than existing websites, but they are still able to find
new vulnerabilities even on the most popular websites.
The discovery of cross-site scripting vulnerabilities on
the Web seems to be far away from saturation.

• The databases contain few submissions with more com-
plex techniques such as control flow modification or
string interpretation. Possibly due to a lack of incentives,
users may be looking for new websites that are vulner-
able to an existing general-purpose exploit, as opposed
to searching for new exploits on an existing website.

5 Discussion & Conclusion

Our longitudinal analysis of exploitation techniques in
XSSED and OPENBUGBOUNTY submissions has shown that
most reflected server XSS exploits are surprisingly simple,
with an only moderate increase in sophistication over ten
years. For example, few exploits use obfuscation, possibly be-
cause users lack incentives to submit more complex exploits.
Similarly, in additional experiments we found that the vast
majority of exploits could have been blocked by the default
settings of filters that were available in browsers at the time
the exploits were submitted, such as XSS Auditor in Chrome,
the XSS filter in Internet Explorer, or NoScript for Firefox.

Currently, submitters gain recognition primarily through
the number of exploits they submit. This appears to encourage
submitters to use automated tools and scan a nearly boundless
supply of vulnerable websites with simple, general-purpose
exploits. We believe that XSS databases could increase their
utility by leveraging human skill for tasks that are more diffi-
cult to automate. Bug bounty programmes could encourage
depth over breadth by restricting the set of eligible websites,
or by scoring submissions by the “complexity” or uniqueness
of the techniques needed to make the exploit work.

The relative simplicity of exploits in the two databases,
also anecdotically observed by Pelizzi and Sekar [17], has
implications for researchers using them for model training or
system evaluation. Ideally, a sample of exploits used for these
purposes should cover a diverse set of technical conditions.
In reality, however, most exploits in the two databases are
technically equivalent. As a result, random samples of exploits
contain only a few complex examples that would challenge the
system to be evaluated. For a more diverse sample, researchers
could apply an approach similar to ours and select exploits
based on different patterns.

Our data does not allow conclusions about the security pos-
ture of individual websites and how it evolves over time. Yet,
standard, low-sophistication exploits appear to be effective
on a large set of websites including the most popular ones,
demonstrating that shallow XSS vulnerabilities are still ex-
tremely widespread on the Web.

We hope that our research will spark new directions with
the goal of improving the security posture of existing websites
and mitigating the prevalent XSS attacks. The data used in
this paper is available online [1].
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