
Extending Mondrian Memory Protection
Clemens Kolbitsch

Secure Systems Lab, Vienna University of Technology
Treitlstr. 1/4. Floor/E183-1

A-1040 Vienna
Austria

ck@iseclab.org

Christopher Kruegel
UC Santa Barbara

Department of Computer Science, University of California
Santa Barbara, CA 93106

USA

chris@cs.ucsb.edu

Engin Kirda
Eurecom

Sophia Antipolis science park
2229, Route des Crłtes

06560 Valbonne Sophia Antipolis
France

kirda@eurecom.fr

ABSTRACT

Most modern operating systems implement some sort of memory protection scheme for user processes. These
schemes make it is possible to set access permissions that determine whether a region of memory allocated
for a process can be read, written, or executed by this process. Mondrian memory protection is a technique
that extends the traditional memory protection scheme and allows fine-grain permission settings. Instead of
being able to set access permissions on a page-level, Mondrian memory protection supports different access
permissions for individual words. However, this protection scheme is still limited to only two permission bits
that have a predefined semantics. This is not sufficient to implement more complex security techniques, for
example, a race condition detection system.

In this paper, we propose an extension to the simple Mondrian protection scheme that provides more flexibil-
ity to user programs and the operating system. Based on our extended architecture, we implement mechanisms
to protect sensitive data structures on the heap and on the stack. Moreover, we present the implementation of a
technique to detect race conditions and suggest further areas of application. Our experiments demonstrate that
the system can provide the expected protection and ability to detect races with reasonable overheads. Further-
more, our results show that even large systems such as the GNU C library and the Apache web server contain
problems related to race conditions.

RTO-MP-IST-091 10- 1

mailto:ck@iseclab.org
mailto:chris@cs.ucsb.edu
mailto:kirda@eurecom.fr


Extending Mondrian Memory Protection

1.0 INTRODUCTION

Most modern operating systems implement some sort of memory protection for user processes [1–3]. That is, it
is possible to set access permissions that determine whether a region of memory allocated for a process can be
read, written, or executed by this process. Typically, for operating systems that support paged virtual memory,
the granularity of these access permission are on a per-page basis [3].

While memory protection is a useful technique to improve the reliability and security of processes, it is
fairly coarse-grained. The reason is that permission settings can only be applied to complete pages. This limits
the flexibility, especially when there are small memory fragments located close to each other that would require
different permission settings such as on stack memory.

Mondrian memory protection [4, 5] is a technique that extends the traditional memory protection scheme
and allows fine-grain permission settings. More precisely, instead of being able to set access permissions on a
page-level, Mondrian memory protection supports different access permissions for individual words. However,
Mondrian memory protection is still limited to only two permission bits with a predefined semantics. Similar
to the bits at the page-level, these permission bits control read, write, and execute access. This might not be
sufficient in all cases. For example, in order to keep track of the memory accesses of multiple threads to detect
race conditions, the available mechanism is insufficient. Unfortunately, race conditions are an important prob-
lem and lead to bugs and security vulnerabilities that are difficult to detect [6–9]. This problem is exacerbated
by the increasing use of parallel programming and multi-threaded applications.

In this paper, we propose an extension to the simple Mondrian protection scheme that provides more flex-
ibility to user programs and the operating system. More precisely, instead of two protection bits, we propose
to use 30-bit protection labels that can be assigned to each memory word. Using this general protection frame-
work, one can implement different techniques such as buffer overflow detection, precise memory protection, or
race condition detection. These protection labels are controlled via an extension to the x86 instruction set that
allows user programs controlled access to protection information. In case of a protection fault, the operating
system invokes a user-defined module in the kernel that can implement a flexible policy to handle the exception.

In the rest of the paper, we first describe the general mechanisms that our system supports, as well as
details of the implementation. Then, we discuss a number of concrete techniques that leverage the general
memory protection mechanisms as well as a race condition detector. Finally, we describe our experiments that
demonstrate that the system can provide the expected protection and ability to detect races with reasonable
overheads.

The contributions of this paper are as follows:

• We present a generalization of the basic Mondrian memory protection scheme that allows user processes
and the operating system to operate with flexible 30-bit protection labels at word-granularity. This scheme
is supported by extensions to the processor instruction set and the operating system.

• We demonstrate the flexibility of the protection scheme by implementing three techniques that build upon
the general protection framework. These techniques provide return address protection, heap management
protection, and race condition detection capabilities. Furthermore, we elaborate on further application
areas of the general protection scheme.

• We show that our extensions are successful in preventing certain types of attacks and in finding race
conditions while incurring a reasonable runtime and memory overhead.

10- 2 RTO-MP-IST-091



Extending Mondrian Memory Protection

2.0 SYSTEM OVERVIEW

In this section, we briefly explain the inner workings of Intel’s x86 memory management as well as the Mon-
drian memory protection architecture as presented in [5]. Then, we outline the limitations of the current ap-
proaches and present our design to overcome the problems.

2.1 Intel x86 Memory Management

Modern operating systems divide the address space visible to a user process (often referred to as the virtual
address space) into sections of equal size, typically called pages. Each memory page allocated for a program
is represented by a page table entry in the program’s page directory/page table hierarchy. The page hierarchy
is used by the operating system and the CPU’s memory management unit to map virtual memory pages to the
corresponding physical frames in the RAM1. This mapping is necessary to find the location in physical memory
that corresponds to a virtual address.

Besides the mapping information, a page table entry contains two bits, informing the CPU whether a page
is read-only and whether access is restricted to supervisor code. On every access to a virtual memory
address, the CPU consults the mapping to find the respective physical memory. It then checks the aforemen-
tioned access bits. When an invalid access is detected, the CPU raises a page fault. This signals the operating
system’s kernel that a problem has occurred and allows for a proper reaction to resolve the problem (e.g., by
terminating the offending process).

2.2 Mondrian Memory Protection

Similar to the x86 architecture, Mondrian memory protection employs two bits to store four different access
permissions (no access, read-only, read-write, and execute-read) for every memory region available in the
system. However, instead of storing the permission information in the per-process unique page hierarchy,
Mondrian memory protection uses an additional permissions table. This allows the system to store protection
information for each memory word (instead of the page-level granularity of the x86 architecture). On every
access to a memory address, the CPU’s protection enhancement looks up the address protection bits stored in
the corresponding protection table. To reduce the memory overhead introduced by the protection tables, the
implementation in [5] provides different possibilities for storing the table’s structure. This allows to adjust the
size of the region the protection information applies to.

Despite its flexibility, Mondrian memory protection shares one shortcoming with the standard x86 protec-
tion scheme - which is the fact that one cannot associate more than two bits of protection information to a
memory region. Moreover, the predefined meaning of the four possible bit combinations significantly limits
the flexibility of the protection system. These two drawbacks are the starting point of our extended Mon-
drian memory protection technique: While trying to combine the simplicity of x86 memory protection with
the fine granularity of the original Mondrian memory protection, our implementation allows a user-specified
examination of expanded protection information stored for memory regions. For this purpose, our protection ar-
chitecture is split into the three components protection hierarchy, access control, and access policies, described
in Section 2.3, 2.4, and 2.5 respectively.

1When referring to physical addresses, a memory region holding data of a virtual page is called a frame.

RTO-MP-IST-091 10- 3



Extending Mondrian Memory Protection

2.3 Protection Hierarchy

Similar to the page table hierarchy, which is used in the x86 architecture to perform a mapping from virtual to
physical addresses, our extended Mondrian memory protection uses a two-level hierarchy of protection tables.
That is, there is a protection directory that stores entries that point to protection tables. Each protection table,
in turn, has entries that point to protection pages. Each allocated word of virtual memory is represented by an
entry in the protection page. The newly introduced control register CR6 serves as entry point into the protection
hierarchy. An overview of the protection hierarchy can be seen in Figure 1.

Figure 1: Protection hierarchy.

To save space when the protection labels of all words in a particular page are identical, we use two different
levels of granularity:

• High granularity protection: This method adds 30 bits of protection information to every word in the
virtual address space. The protection information is stored in a protection page allocated in the process’
virtual address space, but is protected from direct access by user code.

• Low granularity protection: This method stores protection information directly into the entry of the
protection table, allowing to specify 30 bits of protection information for a complete page of virtual
memory.

Clearly, the operating system has the ability to directly manipulate the content of the protection tables.
For example, this can be done in response to a protection fault, or when a process starts (in order to define
appropriate protection settings for certain memory regions). However, we also want to provide an interface
that allows a user process to modify its memory protection settings in a controlled fashion. For this purpose,
we have introduced a set of new machine instructions, allowing a process to read, set, or modify protection
information through the instructions prot_mov, prot_and, and prot_or. Further, a thread or process can
only modify protection information of memory areas it has read- or write-access to. Thus, one thread cannot
undo restrictions imposed previously (e.g., by a controlling thread).

10- 4 RTO-MP-IST-091



Extending Mondrian Memory Protection

2.4 Memory Access Control

When performing a memory access, the CPU has to do a look up of the protection information for the corre-
sponding address. This is done by navigating through the protection hierarchy, starting from the current value
of the control register CR6 (as shown in Figure 1). When high granularity protection is used, the protection
table entry looked up by the CPU serves as pointer to a protection page, which contains the 30-bit protection
label used for memory access control. Otherwise, in case of low granularity protection, the corresponding bits
of the protection table entry are directly used for access control2.

In case no protection information is found (because the protection directory or protection table does not
contain a corresponding entry), the access to the memory address is immediately granted. Also, note that
regardless of the granularity level, it is possible that a memory access requires looking up more than one
protection label. Typically, this happens when a multi-byte access is unaligned or spans two pages. In these
cases, our memory protection checks all protection labels. Access is only granted when all labels permit it.

Once a 30-bit protection label is retrieved, it can be used to perform an access control decision. That is,
given this label and additional information, the system must decide whether an access should be granted or
whether a protection fault should be thrown. The aforementioned additional information that allows the access
decision to be made is the value of a new processor register, the protection control register CR5. In addition,
there are two access bit-masks, called a read-mask and a write-mask.

To reach an access control decision, the system takes the 30-bit protection label obtained during look up
and performs a logic AND operation with the appropriate access bit-mask (depending on whether this is a read
or write access). The result of this operation is a protection token. Similarly, the values currently stored in the
control register CR5 and the mask are ANDed, obtaining a control token. Comparing both tokens decides if the
current memory access should be granted or not. More precisely, a protection fault is raised in case the two
tokens do not match. Figure 2.4 shows two examples for access control decisions that yield different results.

Prot. label 0b00000000000000100111000111010000
CR5 0b00000000000000100001000111010000
Read mask 0b10000000000000111111111111111100
Result Protection violation

Prot. label 0b00000000000000100111000111010000
CR5 0b00000111000000100111000111010000
Read mask 0b10000000000000111111111111111100
Result Read access granted

Figure 2: Access control decisions for a read access.

2.5 Memory Access Policies

As previously mentioned, our extended Mondrian memory protection does not specify any specific meaning for
the individual bits protecting a memory address. The system only performs access control checks as outlined

2The two least significant bits of a table entry are used to distinguish between granularity levels and mark entries as valid. Although
the high granularity protection would support 32 bits to be used as protection label, the two extra bits remain unused to create a
consistent architecture.

RTO-MP-IST-091 10- 5



Extending Mondrian Memory Protection

above. The way in which the protection labels and the content of the protection register (together with the bit-
masks) are used is completely up to the user of the system. In the following Section 3.0, we will demonstrate
the flexibility of the approach by showing how different applications can be implemented on top of the general
architecture.

To specify rules or policies for using the memory protection system, the user has two mechanisms. On one
hand, a program (or a compiler) can use the newly introduced instructions to manipulate the memory protection
settings (labels) during process execution. In addition, the user can load a kernel module into the operating
system that defines the protection fault handler. This protection fault handler can be arbitrarily complex and
runs in the context of the kernel. Thus, it has full control over both the control registers and the memory
protection information. Also, the kernel module is notified whenever a new process or thread is started, or
when the operating system schedules a new thread. This allows the system to react to events that might require
to load thread- or process-specific protection values.

2.6 Implementation

To provide the instructions to modify the protection labels, the instruction set of the x86 processor needs to be
extended. Also, we had to add additional control registers and a cache similar to a translation look-aside buffer,
which is responsible for caching the protection labels for recently accessed memory locations.

The open source system emulator Qemu [10] served as base for our implementation. Besides the necessary
processor extensions, we extended the code for translating virtual addresses to also look up protection labels
and to do the necessary access control checks. Similar to the occurrence of a page fault, protection faults are
passed to the emulated system using interrupts, and thus, need no special extensions.

To keep compliance with existing compilers and code inspection tools (such as debuggers and disassem-
blers), the machine instructions to access the memory protection settings were realized through the currently
unused but specified control register CR7. Each bit assigned to this register was given a special meaning, indi-
cating source and destination registers as well as the requested modification operation. That is, the instructions
to manipulate the memory protection settings are expressed as instructions that modify the control register CR7.

To allow the first component of our architecture to provide the protection hierarchy to the CPU, we had to
hook page allocation and destruction code, as well as a few thread scheduling routines in the operating system.
For this, we used the Linux kernel, since it allows easy inspection and modification of the source code.

3.0 SYSTEM APPLICATIONS

Our extended Mondrian memory protection architecture provides a versatile framework to implement different
techniques that allow processes (and threads) to protect sensitive memory regions. These memory regions can
be control data (such as return addresses), process management information, or thread-shared data buffers. To
demonstrate the versatility of our system, we built three applications on top of our proposed architecture. More
precisely, Section 3.1 shows how stack and heap areas can be protected against memory corruption attacks.
In Section 3.2, we discuss how the architecture can be leveraged to implement a race condition detection
system, whereas Section 3.3 demonstrates the possibility of protecting sensitive data, even in a multi-threaded
environment.

While the former system applications are not novel per se, we show how easily each mechanism can be
expressed in the context of our protection scheme. This should help the reader understand and appreciate the
flexibility and expressiveness of our novel system architecture.

10- 6 RTO-MP-IST-091



Extending Mondrian Memory Protection

3.1 Buffer Smashing Protection

The problem of insufficient validation of user-provided input data has been known for a long time. Although
many different techniques have been introduced to protect programs against memory corruption, buffer over-
flow, stack, and heap smashing exploits still belong to one of the most popular attack vectors.

A possible way to leverage our architecture to protect against a buffer overflow that targets a return address
on the stack is to make this address write-protected. That is, the compiler can use our extended memory
protection system to add code to the function prologue that sets the return address as read-only. Thus, when
there is a vulnerability inside the body of the function, the attacker cannot overwrite the return address and
hijack the control flow of the program. Of course, when the function returns, the memory location on the stack
that stores the return address has to be unprotected (i.e., write access has to be enabled again).

In addition to protecting only the function return addresses, we can also add protection boundaries around
each local buffer. Such protection boundaries (often called canaries [11]) are realized as write-protected words
that are put around each local buffer. As a result, whenever the process attempts to access an out-of-bounds
value directly before or after the buffer, the write-protected canary is accessed. This raises a protection fault,
what protects against overflows that do not attempt to modify the function return address, but that target another
local variable that is adjacent to the exploited buffer.

Extending this idea, we have added protection code to memory allocation functions in order to prevent heap
buffer overruns. Doug Lea’s Malloc [12], the memory allocator the GNU C library implementation is based
on, uses in-band management information to maintain currently allocated chunks of memory. Protecting these
memory areas prevents undeliberate accesses that can also be leveraged to eventually overwrite control data,
hijacking the program’s control flow.

To add the necessary code that uses our architecture to protect the return address and the local buffers, we
have modified the code generation back-end of the tinycc compiler [13]. Further, we have introduced code to
the allocator’s alloc, realloc, and free routines in the C library to unlock in-band management data prior
to each modification. The protection code is quite straightforward. To ensure that a certain memory word (such
as the return address, boundary around a buffer, or in-band data) cannot be modified, we set the most significant
bit of its protection label. Moreover, the kernel component sets the most significant bit of the write-mask and
clears this bit of the control register CR5. Thus, every write access to a canary will lead to a mismatch of the
protection and control tokens, causing a protection violation. Likewise, the most significant bits of the canary
words are cleared during unprotection, restoring the original label of the memory addresses.

3.2 Race Condition Detection

To show a second application for leveraging our extended Mondrian memory protection architecture, we have
made our own implementation of the race condition detection algorithm described in [14]. In this section,
we briefly describe the original detection algorithm and how our implementation differs from that. With this
system, an application can, prior to its release, be tested for race conditions, a quite easy-to-make and hard-to-
find programming error. Section 4.3 then provides an overview of applications tested with our system, as well
as of actual race condition bugs that we found.

In [14], the author describes a data race (condition) as follows:

A lock is a simple synchronization object used for mutual exclusion; it is either available, or
owned by a thread. The operations on a lock mu are lock(mu) and unlock(mu).

A data race occurs when two concurrent threads access a shared variable where (1) at least one

RTO-MP-IST-091 10- 7



Extending Mondrian Memory Protection

access is a write, and (2) the threads use no explicit mechanism to prevent the accesses from being
simultaneous.

In order to be able to detect possible race conditions in a program, the detection algorithm uses four bytes of
shadow memory for each memory word in the application’s address space. As long as a memory address has
been accessed by a single thread only (identified by its PID), this memory address is owned exclusively
by this thread. To indicate this fact, the shadow memory contains the owner’s PID.

As soon as a thread accesses a memory location whose shadow memory contains a different PID, the
detection algorithm knows that the data at this memory location is shared. Thus, the first requirement for a data
race stated above is met. To test whether there is a real data race, the second requirement needs to be checked
as well. To this end, the system employs the lock-set algorithm:

As part of the lock-set algorithm, the system instruments all calls to synchronization procedures to notify
the detection system about changes of each thread’s currently held locks. This allows the system to determine
the set of locks that a thread holds at any point in time. Also, the semantics of the shadow memory is different
for shared memory regions. Instead of the owner’s PID, the shadow memory of each shared memory location
contains two status bits3 and an ID that tells the detection algorithm which set of locks have been held previously
by threads accessing this memory location. The set is called the lock-set for this location.

On every access to a shared memory location, the lock-set set is recalculated by intersecting the set of locks
currently held by the running thread with the set identified by the ID in the shadow memory. If this intersection
ever yields an empty set, the detection algorithm has found a data race and can issue a warning. For a more
detailed description of the detection algorithm, refer to [14].

To implement the lock-set algorithm on top of our architecture, we require a mechanism to detect the case
in which multiple threads access the same memory area. Moreover, we require a way to represent the locks that
a thread currently holds. Finally, it is necessary to have a representation for the lock-sets that store, for each
shared memory region, the set of locks that were held while accessing this region.

We use an approach that is similar to the original system, but instead of a shadow memory, we use the 30-
bit protection labels to hold the shadow memory’s content. When using the race condition detection module,
the kernel puts the 16 bits of the PID of the currently executing process into bits 3 through 19 of the control
register CR54, clearing all other bits. Likewise, bits 3 through 19 of the read- and write-masks are also set. This
ensures that a protection violation occurs whenever a process accesses a memory address that it does not own
exclusively.

When the kernel protection fault handler identifies a shared memory access, it marks the target of this
memory address as shared. This is achieved by setting bit 30 of the protection label to 1. By also setting this
bit in both access bit-masks, every further access to that memory location will trigger a protection fault. This
allows the protection fault handler to compare and update the set of locks held during the memory access. When
a memory region is marked as shared, the remaining bits can be used to store the lock-set ID (which indicates
the locks that were held while accessing this memory region).

The following example shows two threads accessing a common memory location addr. We assume that
addr is initially owned exclusively by the first thread. Thus, the protection label in Line 1 stores the ID of
Thread 1 (starting at bit 3). It can be seen how the accesses to this variable change the memory’s protection
information until a race condition is detected in Line 9. The race is detected when the first thread writes to the
shared memory region while holding lock m1. The reason is that, previously, in Line 6, the same memory was
accessed by Thread 2 using only lock m2. Thus, the lock-set is empty, indicating a bug.

3The status bits indicate that the memory location should be treated as shared and keep track of whether there has been a write
access to the memory location since it has been marked as such.

4Bits 0 and 1 of control register CR5 are reserved and may not be used. Bit 2 is not used for legacy reasons.

10- 8 RTO-MP-IST-091



Extending Mondrian Memory Protection

CR5 Prot. data Locks Threads
of addr held PID 1 PID 2

1 000...01000 {} = ID(0)
2 01000 {m1} = ID(1) lock(m1);
3 .. write(addr);
4 .. {} = ID(0) unlock(m1);

5 10000 {m2} = ID(2) lock(m2);
6 .. 010...00010 read(addr);
7 .. {} = ID(0) unlock(m2);

8 01000 {m1} = ID(1) lock(m1);
9 .. 010...00000 write(addr);

Of course, we require a mechanism to identify which locks are currently held by a process. To this end, we
insert hooks into the operating system kernel that get notified when a kernel semaphore is locked or unlocked. In
addition, we extended the system call interface to receive notifications about user-land locking operations (such
as calls to the mutex and semaphore code provided by the C library). By patching the dynamically loadable
GLibC5, we are able to test completely unmodified applications for the occurrence of race conditions allowing
much higher applicability than the original Eraser implementation [14].

Further, when comparing our system to Eraser, we note that our memory footprint is much smaller: While
Eraser incurs 100% memory overhead (every word is described by 4 bytes of shadow memory), our protection
system uses different granularity levels for different memory areas. Although shared memory pages require the
same amount of extra memory, we can use low granularity protection on memory areas such as the threads’
stacks, read-only data sections, and code mappings, reducing the overhead drastically.

3.3 Memory Containment

To give a short insight into further areas that could be explored with our generic protection mechanism, we
briefly want to mention the idea of memory containment. Today, many applications used in everyday life are
expandable with the use of plugins or add-ons. Typically, these extensions are provided by third parties and run
within the main application’s memory context. Thus, they have complete access to all resources held by the
application and may alter these unrestrictedly.

As an example, consider internet browsers, where such add-ons could manifest as search bars, download
helper, or language packs. Although these extensions only require very limited access to internal structures
(e.g. for installing callback routines), they have full access on sensitive data, such as password management,
browser history, connectivity settings, etc.

Due to their vast popularity and apparent abundance of programming errors, many malware variants now
use these extensions as target for drive-by download vulnerability spreading [15]. This shows that add-ons
often contain poorly written code and could thus easily interfere with the stability of the hosting application.
By leveraging extended Mondrian memory protection and placing untrusted code into separate threads, the
application can restrain the memory areas add-ons have access to.

As mentioned in Section 2.3, a thread can only alter protection labels of memory areas it can access. Thus,
the main application can protect vital memory structures by restricting access based on its own thread ID prior

5As part of the GNU C library, the Native Posix Thread Library (NPTL) provides several user-land synchronization capabilities
such as mutexes, read/write locks, semaphores, and spinlocks.

RTO-MP-IST-091 10- 9



Extending Mondrian Memory Protection

to loading extension plugins. This prevents any untrusted code from jeopardizing the browser’s stability or
accessing sensitive data. We can imagine a broad use of this concept when thinking of other multi-threaded
applications, such as server applications, mail clients, document readers, and so on.

4.0 EVALUATION

This section provides details on the performance and memory overhead introduced by our extended Mondrian
memory protection. We also discuss the effectiveness of the previously introduced system applications, in
particular, the race detector.

4.1 Performance

Although our prototype implementation did not focus on performance, we have attempted to estimate the per-
formance penalty factor introduced. Table 1 shows averaged results of measuring ten executions of encrypting
a binary file with gpg2, solving a sudoku puzzle6, and scanning multiple files using the open source (GPL)
anti-virus toolkit daemon of ClamAV.

Table 1: Relative performance penalties introduced by the extended Mondrian memory protection compared to the original
system (i.e., without any Mondrian memory protection).

Mode Exec. Instructions TLB Page Prot.
Time Executed misses Faults Faults

(ring0 / ring3) (abs.) (abs.)
gpg2:
Baseline 1.000 1.000 (1.000 / 1.000) 1.000 319 0
MMP 1.058 1.004 (1.134 / 1.000) 1.090 319 0
Heap prot. 1.478 1.011 (1.383 / 1.000) 1.104 344 13
sudoku:
Baseline 1.000 1.000 (1.000 / 1.000) 1.000 109 0
MMP 1.069 1.011 (2.230 / 1.000) 1.091 115 0
Heap prot. 1.248 1.015 (2.604 / 1.000) 1.000 115 1
Stack prot. 1.438 1.018 (2.418 / 1.000) 1.103 111 1
St. & H. p. 1.487 1.022 (2.701 / 1.000) 1.300 129 2
ClamAV daemon:
Baseline 1.000 1.000 (1.000 / 1.000) 1.000 263 0
MMP 1.107 1.042 (1.071 / 1.000) 1.441 273 0
Race det. 37.464 23.366 (134.0 / 1.166) 71.596 342 143.627

Analyzing the results, we can see that the run-time penalties for using the stack and the heap protection are
relatively small, making it suitable for deployment in production systems. The overhead for the race detector
seems excessive at first glance. However, these numbers are in the same range as for the original Eraser [14]
system. Moreover, the race detector is targeted for the testing phase of applications, prior to their deployment.
In this phase, even a significant performance penalty can be easily tolerated when the system is able to identify
hard-to-detect errors.

6http://pubpages.unh.edu/˜pas/hacks/sudoku/

10- 10 RTO-MP-IST-091

http://pubpages.unh.edu/~pas/hacks/sudoku/


Extending Mondrian Memory Protection

Another critical issue is the additional load on memory caches. The amount of extra memory accesses by
the protection enhancement might cause considerable performance loss. To remedy this problem, we propose
an additional protection cache next to the traditional instruction- and data-caches or merely increasing the
existing cache’s size.

4.2 Memory Overhead

As mentioned in Section 2.3, the additional memory required for storing protection labels depends on the
granularity level chosen. For low granularity protection, only the additional protection hierarchy has to be
stored, occupying the same amount of memory as the memory necessary to store the page directory and the
page tables.

Since stack- and heap-protection as well as the race condition detection system all require high granular-
ity protection, their memory requirements can become significantly large. To keep the overhead as small as
possible, all pages are protected using the low granularity level by default. Only when finer-grain protection is
required for a certain address, the system switches to high granularity protection for this page only.

To get a feeling for the memory overhead that can be expected in practice, we measured the additional pages
(with a size of 4 KB) that our system required during the experiments to store the necessary protection informa-
tion. The heap protection for gpg2 required 13 additional pages. For the stack and the heap protection for the
sudoku application, the system needed one additional page each. For storing the race detection information,
101 additional pages were necessary. Thus, in all cases, the overhead incurred was less than 500 KB.

4.3 Effectiveness of System Applications

For the stack and heap protection, we developed a number of small applications that contained vulnerabilities
that would allow an attacker to launch different attacks to corrupt stack and heap memory. As expected, all
exploits that modified write-protected data structures were correctly identified. Thus, for the reminder of this
section, we focus in more detail on the effectiveness of the race condition detector.

To test the effectiveness of the race condition detection system, we have examined a number of large,
multi-threaded applications:

• hand-crafted applications to test the GNU C library’s locking, heap-allocation, and thread management
code,

• several chat server implementations (such as OpenNaken or chat1d),

• a small multi-user game server (Space Tyrant Game Universe),

• ClamAV’s scan daemon, and

• the Apache2 web server.

As the detection system is a dynamic analysis tool, only those code regions that are actually executed are
examined. Thus, we cannot guarantee the absence of race conditions for a complete application. However, on
the positive side, each warning is a strong indication of an actual error because the potential race condition was
produced by an actual program run.

In the following subsections, we discuss in more detail a subset of the race condition errors that we found
during our experiments (and that we believe are most interesting):

RTO-MP-IST-091 10- 11



Extending Mondrian Memory Protection

GNU C library, mutex locking.

We developed a number of small applications to test the individual locking strategies offered by the Linux
kernel and GNU C Library. The code snippet below (taken from mutex.c) is run concurrently by multiple
threads and was included in all implementations. Of course, to test different locking mechanisms, the calls to
the mutex functions were replaced appropriately.

1 pt_mutex_t m1, m2;
2 int ctr, unprot_ctr;
3 int incorrect_ctr;
4

5 void *concurrent() {
6 int cpy;
7 pt_mutex_lock(&m1);
8 pt_mutex_lock(&m2);
9 cpy = (ctr++);

10

11 printf("ctr %d", ctr);

12 pt_mutex_unlock(&m2);
13 pt_mutex_unlock(&m1);
14

15 pt_mutex_lock(
16 cpy?(&m1):(&m2));
17 incorrect_ctr++;
18 pt_mutex_unlock(
19 cpy?(&m1):(&m2));
20

21 unprot_ctr++;
22 }

The function uses two locks for mutual exclusion, while the variables ctr, unprot_ctr and incorrect_ctr
are accessed using both, no, and inconsistently used locks, respectively. Running this program with an active
race condition detector, we obtain the results shown in Table 2.

Table 2: Automatically-generated report from the race condition detection system applied to the mutex testing application.

Address Symbol Location
1 0x080c9358 _IO_stdfile_1_lock+0x8 ioputs.c (Line 2 - in listing below)
2 0x080c9350 _IO_stdfile_1_lock ioputs.c (Line 2)
3 0x080c6830 unprot_ctr mutex.c (Line 21)
4 0xb7f9dbd8 n/a (stack location) pthread_join.c
5 0x080c6834 incorrect_ctr mutex.c (Line 17)
6 0xb6f99d94 n/a (stack location) pthread_join.c
7 0x080c6180 _IO_2_1_stdout_+0x14 genops.c
8 0x080c61e8 n/a genops.c

Whereas race conditions 3 and 5 were anticipated, the other 6 warnings need closer examination: The
source code below shows the location of race conditions 1 and 2. While the accesses to _IO_stdout and
(_IO_stdout).owner are race conditions, this does not have any impact in practice. The reason is that
although it is possible that multiple threads enter the body of the if-statement at the same time and invoke
lll_lock (which is a race condition error), this function then performs correct locking.

1 void *__self = THREAD_SELF;
2 if ((_IO_stdout).owner != __self) {
3 lll_lock((_IO_stdout).lock, LLL_PRIVATE);
4 (_IO_stdout).owner = __self;

The next code listing correspond to race conditions 7 and 8. They clearly show that a race condition is
present, but this race was deliberately tolerated by the developers.

10- 12 RTO-MP-IST-091



Extending Mondrian Memory Protection

1 int _IO_cleanup () {
2 /* We do *not* want locking. Some threads
3 might use streams but that is their
4 problem, we flush them underneath them. */
5 int result = _IO_flush_all_lockp(0);

Finally, race conditions 4 and 6 are reported because the NPT library attempts to reset each thread’s
THREAD_SELF variable (stored at the bottom of the stack) to -1 once this thread has died. As the current
implementation of our race detection system is not aware of a thread’s termination, it cannot eliminate this false
positive automatically.

ClamAV daemon.

To demonstrate that the detection system can also handle larger applications, we have checked the anti-virus
software ClamAV for possible race conditions. Although the examination reported ten race conditions, we will
discuss as example only one case. Unfortunately, space limitations prevent us from discussing the remaining
ones in more detail.

One bug report refers to the unsynchronized access to variable progexit (in file serverth.c). Looking
at the appropriate source code, we were surprised to see that the variable access is actually protected by a
mutex exit_mutex. However, searching for other references to the progexit variable, we found code that
accesses this variable without holding the corresponding mutex, thus confirming the warning.

Apache web server.

In addition to its large code base, the Apache web server introduced another burden to the detection tool: As
most web servers use the fork system call to duplicate the currently running process to be able to be more
responsive, the protection system must be aware of this and copy the current protection information into the
new process.

In total, our system found 33 potential race conditions for Apache. Analogously to the ClamAV section,
we will only deal with one example race condition that was reported during our examination. Moreover, a few
other error locations are shown in Table 3.

Table 3: Excerpt of automatically-generated report from the race condition detection system applied to the Apache web server.

Address Symbol Location
1 0x080c373c exploded_cache_gmt+0x3c util_time.c, line 125
2 0x08153058 n/a fdqueue.c, line 345
3 0x081531d0 n/a worker.c, line 892
4 0x080c3ca4 requests_this_child worker.c, line 896

Looking at the source location reported for the fourth race condition in Table 3, we see the function below. The
comment clearly provides a strong confirmation for the correctness of this error report.

1 void * APR_THREAD_FUNC worker_thread(...) {
2 ...
3 /* FIXME: should be synchronized - aaron */
4 requests_this_child--;

RTO-MP-IST-091 10- 13



Extending Mondrian Memory Protection

5.0 RELATED WORK

As mentioned previously, the general protection framework that we designed is an extension of the Mondrian
memory protection idea [4, 5]. In contrast to the original design, we have extended the two protection bits
(that have predefined semantics) with 30-bit protection labels that can freely be used by the operating system
and the running processes. This flexible framework allowed us to build different techniques to protect sensitive
information from being overwritten, as well as to implement a race detection algorithm.

While Mondrian memory protection was used to define different protection domains, these domains have
mostly been used to put different kernel modules in separate compartments so that one faulty module does not
lead to a complete OS crash [16]. Our approach offers more flexibility allowing us to directly implement a
number of different mechanisms on top of our architecture.

Memory corruption protection.

Our stack and heap protection techniques are related to numerous systems that aim to detect or prevent attacks
that exploit memory corruption bugs. Here, we can only provide a brief overview of these techniques, discussing
a few systems that stand as examples for certain categories. One of the earliest techniques to prevent buffer
overflows from overwriting the return address was StackGuard [11]. This system modifies the compiler so that a
special canary word is stored next to the return address. This canary is later checked when the function returns.
When a modification is detected, this indicates a buffer overrun. StackGuard was later improved by systems
such as RAD [17]. RAD is also a compiler modification, but it protects the return address by inserting code
that stores a copy of the return address at a safe location when a function is invoked and using this safe copy on
function return. A system that works similar to StackGuard, but that protects heap management information, is
presented in [18].

Race condition detection.

Similar to memory corruption bugs, race conditions [6] are an important class of program errors that have
received significant attention from the research community.

There are two techniques to approach the problem and to analyze code for the presence of race conditions:
Static techniques [7, 19] use compile-time analysis of the program source code, reporting all potential races
that could occur in a program execution. Dynamic techniques [8, 14], on the other hand, execute the program
and analyze a history of its memory accesses and synchronization operations. This has the advantage that only
feasible program paths are seen. However, dynamic approaches have the limitation that they can typically not
inspect all possible execution paths.

Dynamic approaches are usually either based on a lock-set approach or on the happens-before relationship.
Systems that use a lock-set approach (such as Eraser [14]) require that all shared variable accesses are pro-
tected by a lock. In case the system identifies different accesses to a shared variable for which there is no lock
consistently held, a potential race condition is identified. Systems [20] that leverage the happens-before rela-
tionship attempt to establish a partial temporal ordering between all data accesses. If there is a data access for
which no such order can be found, the system has detected a race condition. In general, systems that are based
on the happens-before relationship are more general, since they are applicable to non-lock-based synchroniza-
tion operations. However, they are typically less effective in finding race conditions (i.e., produce more false
negatives).

Given the implemented system applications, we are aware that they are not novel contributions per se.
However, they demonstrate the flexibility of our novel memory protection architecture introducing a versatile

10- 14 RTO-MP-IST-091



Extending Mondrian Memory Protection

and general system that can serve as the basis for future security techniques.

6.0 CONCLUSION

Traditional memory protection, as implemented in Intel’s x86 architecture, has the shortcoming of being very
coarse-grain. A previous implementation of Mondrian memory protection improved the granularity of protected
memory regions, but still lacks flexibility and precision of the protection information that is stored.

In this paper, we present an extended version of Mondrian memory protection. It allows the system to store
generalized protection labels of 30 bits for every word in an application’s memory context. A user-defined
kernel module allows to specify rules that are examined during memory access by the CPU. Through this, a
broad field of applications can be covered by building on top of our general framework.

To demonstrate the usability and effectiveness of our extended Mondrian memory protection, we have
implemented a system that provides stack and heap protection as well as dynamic race condition detection.
We used our system on a number of large, real-world applications. Our evaluation confirms that the protection
mechanisms effectively prevent certain classes of memory corruption errors. Moreover, the race condition
detector shows that even well-known code bases such as the GNU C library and the Apache web server contain
race-condition-related problems.

ACKNOWLEDGMENTS

This work has been supported by the Austrian Research Promotion Agency (FFG) through project SECoverer
and by the European Commission through project FP7-ICT-216026-WOMBAT.

RTO-MP-IST-091 10- 15



Extending Mondrian Memory Protection

REFERENCES

[1] Denning, P., “Virtual Memory,” ACM Computing Surveys, Vol. 2, No. 3, 1970.

[2] Silberschatz, A., Galvin, P., and Gagne, G., Operating System Concepts, Wiley, 7th ed., 2004.

[3] Tanenbaum, A. and Woodhull, A., Operating Systems: Design and Implementation, Pearson Prentice
Hall, 3rd ed., 2006.

[4] Witchel, E. and Asanovic, K., “Hardware Works, Software Doesn’t: Enforcing Modularity with Mondrian
Memory Protection,” Workshop on Hot Topics in Operating Systems (HotOS), 2003.

[5] Witchel, E., Cates, J., and Asanovic, K., “Mondrian Memory Protection,” International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2002.

[6] Bishop, M., Computer Security: Art and Science, Addison-Wesley, 2003.

[7] Bishop, M. and Dilger, M., “Checking for race conditions in file accesses,” Computing Systems, Vol. 9,
No. 2, 1996.

[8] Tsyrklevich, E. and Yee, B., “Dynamic detection and prevention of race conditions in file accesses,”
Usenix Security Symposium, 2003.

[9] Wheeler, D., “Secure programmer: Prevent race conditions,” http://www.ibm.com/
developerworks/linux/library/l-sprace.html, 2008.

[10] Bellard, F., “Qemu: A Fast and Portable Dynamic Translator,” Usenix Tech. Conference, Freenix, 2005.

[11] Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., and Zhang, Q.,
“StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks,” Usenix Secu-
rity Symposium, 1998.

[12] Lea, D., “A Memory Allocator,” http://g.oswego.edu/dl/html/malloc.html, 2000.

[13] Bellard, F., “Tiny C Compiler,” http://fabrice.bellard.free.fr/tcc/, 2008.

[14] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T., “Eraser: A Dynamic Data Race
Detector for Multithreaded Programs,” ACM Transactions on Computer Systems, Vol. 15, No. 4, 1997.

[15] Moshchuk, A., Bragin, T., Gribble, S. D., and Levy, H. M., “A Crawler-based Study of Spyware in the
Web,” NDSS, 2006.

[16] Witchel, E., Rhee, J., and Asanovic, K., “Mondrix: Memory Isolation for Linux using Mondrian Memory
Protection,” ACM Symposium on Operating Systems Principles (SOSP), 2005.

[17] Chiueh, T. and Hsu, F.-H., “RAD: A Compile-Time Solution to Buffer Overflow Attacks,” International
Conference on Distributed Computing Systems (ICDCS), 2001.

[18] Robertson, W., Kruegel, C., Mutz, D., and Valeur, F., “Run-time Detection of Heap-based Overflows,”
Usenix Large Installation Systems Administration Conference (LISA), 2003.

10- 16 RTO-MP-IST-091

http://www.ibm.com/developerworks/linux/library/l-sprace.html
http://www.ibm.com/developerworks/linux/library/l-sprace.html
http://g.oswego.edu/dl/html/malloc.html
http://fabrice.bellard.free.fr/tcc/


Extending Mondrian Memory Protection

[19] Engler, D. and Ashcraft, K., “RacerX: Effective, Static Detection of Race Conditions and Deadlocks,”
ACM Symposium on Operating Systems Principles (SOSP), 2003.

[20] Dinning, A. and Schonberg, E., “An empirical comparision of monitoring algorithms for access anomaly
detection,” ACM Symposium on the Principles and Practice of Parallel Programming, 1990.

RTO-MP-IST-091 10- 17



Extending Mondrian Memory Protection

10- 18 RTO-MP-IST-091


	Introduction
	System Overview
	Intel x86 Memory Management
	Mondrian Memory Protection
	Protection Hierarchy
	Memory Access Control
	Memory Access Policies
	Implementation

	System Applications
	Buffer Smashing Protection
	Race Condition Detection
	Memory Containment

	Evaluation
	Performance
	Memory Overhead
	Effectiveness of System Applications

	Related Work
	Conclusion

