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Abstract. Mobile computing has experienced enormous growth in mar-
ket share and computational power in recent years. As a result, mobile
malware is becoming more sophisticated and more prevalent, leading to
research into dynamic sandboxes as a widespread approach for detect-
ing malicious applications. However, the event-driven nature of Android
applications renders critical the capability to automatically generate de-
terministic and intelligent user interactions to drive analysis subjects
and improve code coverage. In this paper, we present CuriousDroid, an
automated system for exercising Android application user interfaces in
an intelligent, user-like manner. CuriousDroid operates by decomposing
application user interfaces on-the-fly and creating a context-based model
for interactions that is tailored to the current user layout. We integrated
CuriousDroid with Andrubis, a well-known Android sandbox, and con-
ducted a large-scale evaluation of 38,872 applications taken from different
data sets. Our evaluation demonstrates significant improvements in both
end-to-end sample classification as well as increases in the raw number
of elicited behaviors at runtime.
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1 Introduction

Mobile computing has experienced enormous growth since the introduction of
Apple’s iPhone in 2007. A 2011 poll conducted by the Pew Research Center
showed that 85% of Americans owned a cell phone, of which more than 50%
were smartphones [22]. The Android operating system was released in 2008 and
has since gained a significant share of the market, comprising 85% of smart-
phone shipments in the second quarter of 2014, up from 75% just over a year
before [24]. With the growing number of mobile users worldwide, the increasing
power of these devices, and the corresponding growth of the mobile economy,
mobile malware has similarly grown in both sophistication and prevalence [11].

In response, considerable research has focused on dynamic analysis sandboxes
as a general approach for detecting malicious applications [21,23,26]. In contrast
to static approaches [8-10], dynamic analysis is able to precisely characterize the



runtime behavior of an application under test, or AUT, over concrete inputs, as
well as deal with several techniques that pose significant difficulty for static
analysis such as static code obfuscation, dynamic code loading, and the use of
native code.

Despite its advantages, dynamic analysis can fail to provide useful insight
into test subject behavior due to incomplete coverage. One feature of the An-
droid platform that exacerbates this problem is the event-driven nature of its
applications, where security-relevant code is often only executed in response to
external stimuli such as interactions with the user interface. Current standard
practice, therefore, is to use standard off-the-shelf tools such as the Monkey [4] or
MonkeyRunner [3], which provide random sequences of user inputs and execute
pre-scripted UI tests, respectively. Both of these tools are problematic in the
context of large-scale dynamic analysis for different reasons: pre-scripting user
interactions simply does not scale, and on the other hand random inputs lead
to low code coverage.

In this paper, we introduce CuriousDroid, an automated system for driving
Android application user interfaces in an intelligent, user-like manner. Curious-
Droid operates by decomposing application user interfaces on-the-fly and creating
a context-based model for interactions with an application. Unlike the Monkey,
it is designed to deliver user interactions based upon actual application lay-
outs discovered at draw-time. It significantly improves upon the capabilities of
the MonkeyRunner since it can determine a set of natural, user-like interactions
without prior knowledge of the application. Using structural decomposition of
on-screen layouts and automated identification and classification of interactive
views, CuriousDroid is able to generate a series of interactions that emulate typ-
ical human interaction.

In this paper, we show that CuriousDroid would be highly useful in a malware
triage role, greatly reducing the burden on manual analysts in terms of numbers
of new malicious samples to analyze. In particular, one of our evaluation data
sets contained 8,827 applications that could not be classified as either benign or
malicious. Using CuriousDroid to reclassify the data set resulted in 2,246 likely
malicious applications, a significant reduction.

While prior work has examined more sophisticated user input generation [5,
6,15,16,20,27], we distance ourselves from these efforts by precisely quantifying
the effects of human-like user interactions for large-scale dynamic analysis, as
well as requiring no modifications to the operating system nor any static analysis
component.

To summarize, this paper makes the following contributions.

— We introduce CuriousDroid, a system for automatically generating user-like
UI interactions for Android applications. CuriousDroid uses dynamic instru-
mentation, application layout decomposition, and heuristic input generation
to explore Android applications in an intelligent, user-like manner.

— We integrated CuriousDroid with the well-known Andrubis malware analysis
sandbox, replacing the Monkey with CuriousDroid to drive the Ul of analysis
subjects.



— We conducted a large-scale evaluation of CuriousDroid using 38,872 applica-
tions from different data sets. Our evaluation demonstrates that our system
improves the analysis results of Andrubis, eliciting behaviors that were not
observed when relying upon random UT interactions.

2 Background and Motivation

Android is an open source mobile operating system that has enjoyed enormous
success in recent years. The backbone of the OS is a modified Linux kernel
targeted towards embedded devices with limited power, memory, and storage.
Applications are written primarily in Java with the option of utilizing the Java
Native Interface (JNI) via Android’s Native Development Kit (NDK) to leverage
existing libraries and optimize for performance.

Android applications can consist of four basic component types: Activity,
Service, BroadcastReceiver, and ContentProvider. Activities provide the ba-
sic UI structure of an application, where each screen displayed to the user corre-
sponds to an Activity. Services are meant to run in the background, separate
from the main UI thread and are useful for operations that should not affect
the UI thread, e.g., downloading content. Broadcast receivers are used to listen
for system-wide events such as incoming SMS, phone calls, or emails. Content
providers allow applications to make data available for use by other applications.

Activities. Activities are the most important component of the system in terms
of the UI. An application consists of one or more activities, only one of which can
be visible to the user at any given time. Normally, applications specify the UI
design for each activity using resource files. Whenever the Android framework
wants to display a given activity, the resource file is loaded and displayed to
the user. Additionally, an application can create and add UI elements program-
matically during runtime. These Ul elements are not part of the resource files
contained in an Android application package (APK).

To cover both statically- and dynamically-generated Ul elements, Curious-
Droid analyzes an application’s Ul at runtime. Our runtime analysis is based on
dynamic instrumentation of the target application. Using dynamic instrumenta-
tion, we hook the functionality that is responsible for managing the application’s
UIL. Dynamic instrumentation has the further benefit that we do not have to
modify the Android framework, source code, or the application binary.

Dynamic analysis and Ul exploration. Because Android applications are
event-driven and many important events occur through UI interactions, perform-
ing a dynamic analysis of Android applications using the Monkey as a driver —
which simply generates random event sequences — is problematic. Consider an
activity that requires a user to enter an email address and password to register
an account before using the application. If the application performs any kind of
input validation on those fields, as is often the case, it is highly unlikely that the
Monkey would be able to provide a value that satisfies the validity check, if it is
able to enter any input into the required fields at all.

CuriousDroid is intended to remedy this problem by driving Android applica-
tions using intelligent, user-like interactions in order to increase the likelihood
that any malicious behavior contained therein will be identified by the analysis
as a whole.



3 System Overview

Since Android applications are mostly Ul-driven, applications only execute the
majority of their code after receiving external input, such as from a human
user. Without realistic inputs tailored to the current application Ul context,
dynamic analyses might not explore interesting, security-relevant code, leading
to inaccurate classification results. CuriousDroid aims to solve this problem by
interacting with applications as normal users would, with the goal of increasing
application coverage and eliciting more runtime behaviors in order to improve
the results of the entire analysis.

To that end, CuriousDroid iterates over Android activities in three phases:
user interface decomposition, input inference, and input generation. For each ac-
tivity discovered by the system, the hierarchy of views contained in the activity
is extracted using dynamic instrumentation. Then, the system uses a number of
heuristics to infer the types of user inputs, or interactions, the views expect (if
any). Finally, suitable inputs are generated. Any observed transitions to subse-
quent activities are added to a work queue for later processing. Activities that
have previously been explored are recorded and, if encountered again, Curious-
Droid attempts to explore a different path from that point in the UI. CuriousDroid
intercepts events that might lead to early termination of the exploration, for in-
stance when the Back button is pressed and the current activity is at the top of
the activity stack. An overview of this process is shown in Figure 1a.

Supporting this process are two components: the UlAnalyzer and InputDriver.
The UlAnalyzer uses dynamic instrumentation to inject itself into the target
application, and is responsible for analyzing the UI, inferring context, and track-
ing visited activities. The InputDriver is executed as a separate process, and is
responsible for sending user inputs to AUT.

We designed CuriousDroid to be agnostic of its environment — that is, it
is intended to run on any device or emulator with minimal effort. As one of
the goals of CuriousDroid is to provide a generic automated Ul interaction tool
that can be deployed on any kind of Android application or malware analysis
platform, our system does not require modification of the Android platform or
the application that is tested (aside from automated dynamic instrumentation).
The only requirement is that a device be rooted.

4 User Interface Decomposition

User interface decomposition is the first phase of CuriousDroid for a given activity,
where the goal is to recover the hierarchy of user interface views contained in
an activity. As stated in Section 3, CuriousDroid uses dynamic instrumentation
to interpose on event callback invocations in order to extract this information.
In the following, we describe the instrumentation framework used to accomplish
this, and then outline how view hierarchies are recovered.

4.1 Dynamic Dalvik Instrumentation

CuriousDroid leverages the Dynamic Dalvik Instrumentation (DDI) framework [18]
to instrument Android applications. This framework allows for in-memory injec-
tion of arbitrary code into application processes, enabling dynamic hooking and
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activities are observed. interactions to drive the AUT.

Fig. 1: CuriousDroid overview and components.

interposition on both managed and native code, including transitions between
application and Android framework code.

In particular, DDI is used to inject the aforementioned UlAnalyzer component
into the process corresponding to the AUT. The UlAnalyzer consists of a native
library that in turn executes the AUT within the process. Once the application’s
code has been loaded into memory, the DVM API is used to instrument specific
application methods concerned with Ul-related events. Figure 1b depicts this
process.

4.2 User Interface Analysis

For each activity, the UlAnalyzer decomposes the current view hierarchy. Starting
from the root view (PhoneWindowDecorView) below which all other views in the
activity are attached, all of its descendants are recursively explored using class
introspection for identification and attribute extraction. Typically, the direct
descendants of the root view are instances of one or more container views such
as LinearLayout, GridLayout, or RelativeLayout. Each of these containers
holds either further nested layouts or concrete views.

As the view hierarchy is explored, the UlAnalyzer records any interactive
views that it discovers, such as editable text fields, buttons, spinners, radio but-
tons, and checkboxes, which we refer to as widgets. These widgets often contain
attributes that indicate the expected types of inputs, and are recorded for later
use as described in the next section.

5 Input Inference

The second phase of CuriousDroid’s user interface exploration is input inference,
where the goal is to determine the type of interaction a widget expects. The
point of input inference is to ensure that CuriousDroid drives the execution of
the application in a way similar to how the developers would expect a human to



Activity

(A) Textiield ] (B) Textiield

Y R R ———————,~,
©) emej 1 [ (&) Textiield (B) Textield : —_———-— 1 | (a) Textiield (B) Textfield | | — — ===~
— ! 1 ' (Ceox ) ! | - 1 (e ) !
_E Textfield F) Checkbx
m O1F) Checkbox : [(©) Textfield | [(D) Textfield | ! : : : [[©) Textfield ]»[ (D) Textfield | : : !
1
e e \ 1 () Cancel ) ¢ \ = 1 ( () Cancel ) |
1 | (E) Textfield O (F) Checkbox : N 4 1 L(E) Textfield O (F) Checkbox : N 4
Ve e e e = v A -

(a) The example activity (b) The UlAnalyzer places (c) nextFocus relation-
layout as displayed to the widgets into two equiva- ships for (A-E) are over-
user. Dashed lines indi- lence classes: buttons, and laid onto the current or-
cate a nextFocus relation- everything else. dering.

ship between widgets.

‘
() Textiiend | - [(®) Textfied : —_—————a 1 [(A)Textiiela ]+ [[(B) Textfiela : —_—————-
| 1 I[ (@) OK ]: | | Mok ]:
: (C) Textfield (D) Textfield : : H

|

1

N

t
1

1 () Cancel
_____ s

|
| |
(E) Textfield [0 (F) Checkbox | = = = = = 7

1
1
[\ ——————————

: [[©) Textiiela | + [[(0) Textfiela | : \
|
O omoer )

____________

(d) Position-based heuristics indicate (e) Label extraction identifies (G) as

that the next link should be the check- the correct button to exercise. At this

box (F). point, a candidate ordering has been in-
ferred.

Fig. 2: Inference of an ordering on user inputs for an example activity UI layout.

do so. The underlying assumption is that blindly exercising an application’s UlI,
while perhaps useful for simple or widget-less activities, will not cover as much of
the UI — and, therefore, application code. Likewise, attempting to exhaustively
explore all possible targeted interactions within an activity can quickly become
intractable for complicated activities.

To that end, one concrete aim of input inference is to not only identify the
set of widgets that require input in order to trigger behavior or launch further
activities, but also to tailor meaningful input for each identified widget. For
example, instead of simply providing random text to a text field, CuriousDroid
attempts to identify the class of input a field requires, such as an email address
or phone number, and generates a realistic input drawn from the inferred class.

However, inferring expected classes of input for each widget is not sufficient
to properly explore an activity. Indeed, the ordering of inputs is also important
because a basic requirement of many widgets is that they are populated with
a (well-formed) value before performing an action or launching a new activity.
Therefore, CuriousDroid also needs to infer this partial ordering on all widgets in
the current UI layout so that such constraints are satisfied.

5.1 Widget Orderings

The UlAnalyzer considers four widget attributes when determining an ordering
of widgets to exercise in a Ul layout: widget type, the nextFocus property (if
present ), widget screen position, and widget text labels. These attributes, taken
together, allow the UlAnalyzer to construct a simple, yet accurate, model of how
a user might interact with any given UI. Figure 2 presents an overview of the
ordering inference process for an example activity Ul layout.

The incorporation of widget type information into the ordering inference pro-
cess is motivated by the fact that exercising certain widgets implies a transition



to another activity. The most straightforward concrete example of this is an OK
or Cancel button that submits or dismisses a form, respectively. Since most or all
of the other widgets must generally be populated prior to successful submission
of a form (or to trigger behavior that changes the state of the current activity), it
follows that this class of widget — in particular, OK buttons — must be exercised
last. Therefore, the first step in the ordering inference is to group widgets into
two classes: buttons, and everything else (2b).

The optional widget nextFocus property provides developers with a mecha-
nism for encoding within UI layouts exactly the ordering that users are intended
to follow when interacting with an activity. This manifests in the user experience
as an automatic shift of focus from one widget to another when the Next button
on the keyboard is pressed. The UlAnalyzer considers the presence of this prop-
erty as ground truth of the intended interaction with an activity, and so the next
step of the inference process is to incorporate this ordering information (2c).

The UlAnalyzer assumes that widgets are exercised in a top-to-bottom, left-to-
right order, and uses screen coordinates of the remaining, unordered non-button
widgets to heuristically include them into the current ordering (2d).

Finally, the terminal user input is selected from the button class of widgets.
Here, the UlAnalyzer uses each button’s label as an indicator of whether it is
likely to produce some update to the activity’s state and, potentially, produce a
transition to another activity (2e).

5.2 Expected Input Classes

Given an inferred ordering of widgets to exercise, the next step is to decide what
inputs the UlAnalyzer should provide. For this, three attributes are taken into
account: widget hints, labels, and contextual information. Most developers add
hints to editable text fields that indicate the type of input that is expected, such
as an email address, phone number, postal code, or name.

In the absence of such information, label text is extracted from either the
widget directly — e.g., placeholder text — or from label widgets directly adjacent to
the widget in question. In our observations, these labels are almost as accurate as
explicit hint properties. The labels are then matched against manually-compiled
keyword lists to map them to a canonical class identifier. For instance, a Register
label on a button would map to the OK class, and a Mobile label on a text
field would map to the Phone class. The text contained in these keyword-lists
is translated to several languages, including English, Russian, Korean, Japanese,
and Chinese.

For those widgets that the UlAnalyzer is successfully able to identify a cor-
responding input class, an appropriate input is generated. The text is drawn
from lists corresponding to a specific class of input — for example, in the case
of editable text fields, the UlAnalyzer contains lists for names, addresses, phone
numbers, passwords, and many more.

If the input inference process is unable to determine an input class for a
widget, a random interaction will be supplied. In the case of one or more image
buttons lacking any descriptive text, a single button is randomly chosen.



6 Input Generation

Given an inferred widget ordering and expected input classes for each widget, the
next stage of the Ul exploration for each activity is to actually drive the current
Ul To that end, the UlAnalyzer communicates with the InputDriver, providing
it with ordering and input class information. The InputDriver translates this
information into concrete user input events, which it then injects directly to the
Android event drivers. An overview of this is shown in Figure 1b.

6.1 Input Translation

Translating an interaction to a set of input commands first requires determining
the type of interaction that is expected. Currently, CuriousDroid can generate
both taps and swipes. To click a button, it is only necessary to inject one tap at
the button’s on-screen position. To enter text into a widget, the InputDriver takes
the desired text as input and maps the location of each character to a position
— or positions — on the virtual keyboard. Multiple positions could be required
for characters that require multiple taps, such as capitals, numbers, and special
characters.

The InputDriver defines a function called genericPress that takes as pa-
rameters the desired (x,y) coordinates of the tap, and the amount of time in
microseconds to wait before initiating the tap, and returns each of the values
needed to populate an event structure for the touchscreen event driver.

In addition to the function described above, the InputDriver also provides
functions for the menu button, the back button, and a function that returns ran-
dom events for fuzzing. After the formatted command string for all interactions
has been completely generated, the command string is ready for injection into
the AUT.

6.2 Input Injection

Input injection is achieved via two approaches: event injection and random
event generation. Event injection writes the commands from the UlAnalyzer to
the Android touchscreen event driver, while the random event generation func-
tion creates random taps and swipes to write to the event drivers. Similar to
RERAN [12], the InputDriver can speed up or slow down the execution of an
application; however, we choose to execute at a speed resembling human usage.

In the case that an activity does not contain (known) widgets in its layout,
our interactions will not induce the execution of a new activity. It is therefore
necessary to have a fallback mechanism that attempts to get an application out
of a “stalled” execution state. We have implemented that system from within
the InputDriver module.

In particular, if a preset period of time has elapsed and no observable ac-
tion has occurred in response to an input sequence, the InputDriver initiates the
random event generation process. The process assumes the application is in a
stalled state and attempts to perturb it by sending random events to the system
driver. If this fails to advance the execution of the application, it presses the
Back button, reverting the state of the application to the previous activity.



7 Evaluation

In this section, we evaluate the efficacy of CuriousDroid as a driver for dynamic
analysis. In particular, we compare the results of standard Andrubis [1,14], a
well-known dynamic analysis sandbox for Android applications, to the results of
composing Andrubis with CuriousDroid, and show significant improvements in
the analysis results.

7.1 Andrubis

Andrubis is a large-scale public malware analysis system for Android applica-
tions. It provides a comprehensive analysis report that includes results from
static code analysis as well as runtime behavior using dynamic analysis in the
QEMU emulator, on both the Dalvik VM and system level.

Static analysis of the application’s manifest and certificate yields meta infor-
mation such as requested permissions, services, broadcast receivers, activities,
package name, SDK version, and information about the author. Furthermore,
static code analysis extracts APIs calls and identifies the permissions actually
used in the application’s bytecode in contrast to the permissions required in the
manifest.

During dynamic analysis, Andrubis monitors applications through an instru-
mented Dalvik VM. It records data leaks, filesystem activity, phone activity such
as sending SMS and making phone calls, network activity, and the dynamic load-
ing of DEX code as well as native code through JNI. In order to drive program
execution, by default Andrubis utilizes the pseudorandom user interaction se-
quences generated by the Monkey.

In addition to the analysis report, Andrubis provides a malice score for each
application [13]. Based on static and dynamic features learned from a set of
known benign and malicious applications, Andrubis leverages an SVM-based
classifier to assign scores on a scale from 0 to 10, with 0 being benign and 10
being malicious.

7.2 Experimental Setup

Our evaluation was performed over a data set of 51,571 randomly selected An-
droid applications from five categories: applications that received a borderline
classification from standard Andrubis, those that contain SMS-related code,
those that perform dynamic code loading, those that perform native library load-
ing, and those that interact with the network. Except for the first category, each
of these represents a specific behavior that is potentially (and often) indicative
of malware [28].

We found that out of the 51,571 applications tested, 12,699 drew no activities.
In this case, CuriousDroid was not invoked and we were unable to collect results
for those runs. Therefore, only the 38,872 remaining applications were considered
in our evaluation.

7.3 Activity Coverage

A natural measure of CuriousDroid’s effectiveness in exploring application user
interfaces is in terms of activity coverage, as activities are the main container for
UI layouts on Android. The list of activities for an application is extracted from
its manifest by Andrubis during static analysis. In addition, CuriousDroid logs
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each activity it visits during its exploration. We compare these lists of activities
to calculate our total activity coverage.

Figure 3 shows the activity coverage for all applications in the data set. In
this figure, coverage is binned in 10-percent increments. We note, in Figure 4,
that the majority of applications contain fewer than 10 activities, but as many
as 284 have been found in a single application. Applications with such a large
number of activities are guaranteed to produce low coverage numbers primarily
due to the analysis time limit enforced by CuriousDroid.

7.4 Borderline Classification

To measure the impact of CuriousDroid on Andrubis’ application classifier, we
analyzed 8,827 applications from the data set that received a score on the interval
[4,5] — i.e., a borderline score that is neither definitively benign nor malicious.
As described above, Andrubis’ classifier constructs a feature vector from a mix
of static and dynamic features. CuriousDroid has no impact on the static analysis
performed by Andrubis, so the static features used in our analysis are the same as
in the original Andrubis analysis. Therefore, any change in an application’s score
can be attributed to a change in dynamic features observed during UT exploration.
Figure 5 plots both the original scores assigned by standard Andrubis as well as
the scores generated when incorporating CuriousDroid for this test set.

We note that CuriousDroid produces a significant increase in the quality of
Andrubis’ classifier as measured by score spread. There is an observable density
of scores around 1.0, which demonstrates that the additional runtime behavior
elicited by CuriousDroid was able to allow a relabeling from unknown to benign
for many applications. Also observable are three smaller bands around 8.5, 8.75,
and 10, which demonstrates that a (relatively) smaller group of applications
could be reclassified from unknown to malicious due to CuriousDroid.

We plot the number of dynamic features used by Andrubis during classifica-
tion in Figure 6. On average, more than nine additional dynamic features were
used when incorporating CuriousDroid. The average number of dynamic features
used by CuriousDroid increased to 30.8 from 21.6 with the Monkey. Additionally,
the total number of features generated increased by an average of more than 27
features per application, all of which we can assume are dynamic. The average
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total number of features used increased from 58.6 with the Monkey to 68.4 with
CuriousDroid, in line with the increase in the number of dynamic features used.

7.5 Observed Dynamic Behaviors

The remaining four application categories described in the experimental setup
refer to a specific behavior that static analysis indicated the application had the
capability to perform. However, the applications we consider in each of these cat-
egories did not exhibit these behaviors during dynamic analysis using standard
Andrubis. An overview of the results of composing Andrubis with CuriousDroid
in this respect is shown in Table 1. In the following, we discuss each of the
categories separately.

SMS. The SMS category is a set of applications chosen because they were stati-
cally determined to possess the capability to send or receive SMS messages. Not
only do they request the SEND_SMS permission, but they are also found to have
actual method calls that send or receive SMS messages. We chose this as a search
parameter because it is possible for an application to request a permission that
the developer never intends to use, especially in the case of code re-use. We
found that CuriousDroid was able to trigger the sending of SMS messages in 440
of the 6,871 applications analyzed. Furthermore, many of the numbers to which
messages were sent were short numbers, indicating a higher likelihood that these
messages were sent to premium numbers. Such behavior is often indicative of
malware.

Dynamic code loading. There are times when utilizing dynamic code loading
is useful or necessary — e.g., when the primary application DEX file has more
than 64K method references [7]. Andrubis is able to detect dynamic code loading
during static analysis. The resulting test set consisted of 8,371 applications, in
which CuriousDroid were able to trigger the loading of dynamic code in 358,
representing a total of 4.28% of the set.

Native library loading. Android provides developers with an API for loading
and running native code using JNI. This functionality is particularly important
to developers who need direct access to the GPU or CPU for performance or
power-saving purposes. However, malware can exploit the JNT interfaces to hide



Category # Apps # Triggered % Triggered

SMS 63871 440 6.40%
Dynamic Code 8371 358 4.28%
Native Code 7669 1945 25.36%
Networking 7134 2650 37.15%

Table 1: Dynamic application behavior elicited due to CuriousDroid. By comparison,
Andrubis used with the Monkey produced no behavior in each category.

certain behaviors, such as communicating with remote servers, installation of
rootkits, or general obfuscation [28].

Therefore, we analyzed a set of 7,669 applications containing native libraries
that were not loaded during dynamic analysis using standard Andrubis. Curious-
Droid triggered the loading of these libraries in 1,945 applications, constituting
25.36% of the applications in the set.

Networking. The last test set was composed of applications that requested the
INTERNET permission, commonly used in both benign and malicious applications.
Network connectivity allows applications to access resources over the Internet.
This could be as benign as checking account credentials or downloading legiti-
mate content or advertisements. This permission, however, is also often used for
nefarious behavior such as downloading dynamic code, drive-by downloads, or
connecting to a command-and-control server for mobile bots.

Of the original 10,000 applications tested, 2,866 were found to have drawn
zero activities. Therefore, we limited our analysis to the remaining 7,134. Curi-
ousDroid triggered network traffic in 2,650 applications, representing an improve-
ment of 37.15% of the total set.

7.6 Case Study

In the final experiment, we specifically investigated the 440 samples that only
send SMS messages when executed by CuriousDroid. Using their MD5, we searched
sites such as AndroTotal [17] to determine if a sample is known, determining that
20 samples were not previously known. 15 samples sent SMS messages to pre-
mium numbers, while five samples sent messages to regular phone numbers.

We further investigated one of the SMS samples in more detail. We selected
the sample based on its change in malice score from 0.8743 to 8.6093 when
driven using CuriousDroid. The application asks the user to accept an update
of the program’s database. If the user accepts, the application starts a larger
download. During the download, the application sends five SMS messages to
different short codes. CuriousDroid was able to trigger sending the SMS messages
because it intelligently drove the UI by pressing the correct button. If the user
does not accept the update download, the application immediately terminates
without sending the SMS messages.

8 Discussion

Upon inspection of our initial test set, we discovered 12,699 applications where
zero activities were drawn. We randomly chose a subset of applications to man-
ually inspect in an emulator and found several reasons for this phenomenon.
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Fig. 6: Number of observed dynamic features for each application in the test set. Again,
CuriousDroid elicits significantly more behavior than the Monkey.

The most obvious cause for zero-activity coverage is that some applications
simply crash upon startup. Of these, many applications received a score of 9.0
or higher by Andrubis. We postulate that many malicious applications run their
payload at startup, and have no intention of ever displaying this bootstrapping
activity to the user. In one instance, we observed an application that crashed
on startup, but on a second execution opened a dialog box requesting the user
download and install an update from a third-party website.

On the other end of the spectrum, we noticed that most applications that
achieved 100% coverage had very few activities. Malware is very likely packaged
with simple applications, perhaps containing just one or two activities, although
we see evidence that simply running an application containing malware is not
necessarily enough to trigger the payload. We can infer from Section 7.5 that
stimulating a Ul with intelligent interactions is more likely to trigger malicious
behavior.

When an application transitions from one activity to another, it calls the
startActivityForResult family of methods which takes an intent as an argu-
ment. Applications are not limited to starting activities contained within their
own application, and can additionally open activities belonging to other applica-
tions such as a browser or email application. CuriousDroid examines the intents
passed to startActivityForResult and determines whether or not the target
activity belongs to the current application. If it does not, it blocks the method
call to ensure that the AUT retains focus. Doing so can have unforeseen con-
sequences, sometimes resulting in an application crash. However, in most cases
the application remains in the current activity until perturbed by the random
event generator.

In a similar situation, when the Back button is pressed, the current activity’s
finish method is invoked. If the current activity is not the root of the activity
stack, this is not a problem. However, in the event that the current activity is the
root activity of the application, making a call to finish causes the application to
exit. In an effort to keep the AUT in focus, we block all finish calls originating
from the root activity. This can cause an application crash — which occurs more
often in applications written for older SDK versions — when the root activity
changes from one activity to another. When this happens, we have observed on



occasion that the call to the current root activity’s finish method occurs before
the new root activity has been created. If the new root activity has not yet been
set, we block the call to the previous root activity’s finish call, causing an
application crash.

9 Related Work

Recent work in Android dynamic analysis has taken numerous, diverse approaches.
A recent study [19] performed a comprehensive analysis of 16 dynamic analysis

platforms. Some systems rely on a blend of static and dynamic analysis, while

others only provide a mechanism for examining dynamic properties and do not

include a way to execute applications. Some only rely on fuzz testing, or ran-

dom interactions, to drive execution, while others attempt to exercise the Ul

in a more deterministic fashion. We consider several systems that employ these

techniques and show how CuriousDroid distinguishes itself from these systems.

To avoid detection, malware can implement sandbox evasion. A recent effort
studied the characteristics of different Android sandboxes and how these can
be evaded [25]. Since CuriousDroid can be also deployed on a real device, it
can be used to analyze evasive malware that attempts to fingerprint emulated
environments.

Dynodroid [16] provides a system for interacting with Ul widgets dynami-
cally. The authors implement a mechanism that attempts to generate a sequence
of intelligent UI interactions and system events by observing the UI’s layout,
composing and selecting a set of interactions, and executing those actions. Dyn-
odroid leverages the Hierarchy Viewer [2], a tool packaged with the Android
platform to infer a Ul model during execution, to determine an activity’s layout.
We note that it was necessary to make changes to the SDK source code to enable
this capability. Finally, and perhaps most importantly, Dynodroid requires that
a tester has access to the source code of an application, as use of the Android
instrumentation framework is necessary. In contrast, CuriousDroid can be used
to test any APK file without source code since it dynamically instruments the
application bytecode.

SmartDroid [27] uses a hybrid approach, leveraging both static and dy-
namic analysis, to discover and exercise Ul trigger conditions. Using static anal-
ysis, SmartDroid constructs a desired activity switch path that leads to the
sensitive API calls it wishes to exercise. During dynamic analysis, SmartDroid
traverses the view tree of an activity and triggers the event listeners for each
UI element. If the event listener invokes the start of a new activity, SmartDroid
determines if that activity is on the activity switch path. If not, it blocks the call
to that activity and continues to traverse the current activity’s view tree until
the correct element is stimulated. SmartDroid requires not only modifications to
the SDK, but a modified emulator as well. In addition, relying on static analysis
to reveal sensitive behaviors will exclude calls to dynamically loaded code or
native libraries.

Swifthand [6] is an automated GUI testing tool for Android that leverages
machine learning techniques to create a model of an application which it can
leverage to generate user inputs in an attempt to visit unexplored areas of the
application. Swifthand requires modifications of applications through static in-



strumentation of the binary and it is unclear to us whether or not this process is
entirely automated. It makes no attempt to derive context from an application
based on the Ul, as a human would. The average runtime required by Swifthand
tests was three hours per application, making it unsuited for large-scale testing.
Finally, only 10 applications were included in the test set. Such as small set does
not provide adequate insight into the efficacy of the tool at scale.

A3E [5] provides another system for Ul exploration of Android applications
with two separate approaches: “Targeted Exploration” which uses a CFG gen-
erated during static analysis to develop a strategy for exploration by targeting
specific activities, and “Depth-first Exploration” which attempts to mimic user
interactions to drive execution in a more systematic, albeit slower, way. A3E
is not suitable for large-scale testing due to the long testing time required for
each application. A3E was tested on only 25 applications, and has an average
runtime of 87 minutes per application for targeted exploration method and 104
minutes per application for the depth-first exploration.

AppsPlayground [20], in addition to acting as a malware detection system,
employs a technique for automatically executing Android applications. Similar
to CuriousDroid, AppsPlayground attempts to determine context from the Ul
in order to more intelligently direct an applications execution. This includes
inserting relevant text into text boxes, as well as clicking the most appropriate
buttons. We employ a similar technique to AppsPlayground, using hints and
keywords from UI elements to determine context.

We note that AppsPlayground requires modification of the SDK and OS and
can only be used with an emulator. CuriousDroid has been tested on physical
devices as low as API level 4, up to API level 16, and requires no modifications
to the OS or SDK. We leverage the techniques used in RERAN [12] to pass
interactions to the device, such as taps, swipes, and hardware button pushes.
This means that when text is entered into a field, it is passed in as a series of
actual taps to keys on the virtual keyboard. In contrast, AppsPlayground uses
a modified version of the MonkeyRunner to pass interactions to the application.

AppsPlayground was tested on just under 4,000 applications, only three of
which were known malware samples. Finally, the authors of AppsPlayground
provided no measurements of the end-to-end time required to test an application.
Therefore we are unable to determine the suitability of AppsPlayground as a
system for large-scale measurement.

10 Conclusion

In this paper, we introduced CuriousDroid, an automated system to drive An-
droid applications in an intelligent, user-like manner. Our system is generic and
can be deployed in any Android sandbox and even on real Android devices. To
evaluate our system, we integrated it into the well-known Andrubis sandbox.
We evaluated CuriousDroid using 38,872 applications that we randomly selected
from different categories. The results of our evaluation demonstrate that our
system was able to elicit significantly more runtime behavior over the standard
combination of Andrubis and random input generated by the Monkey, improv-
ing Andrubis’ ability to categorize previously borderline applications as either
definitively benign or malicious. This capability in particular suggests that Cu-



riousDroid would prove very helpful for malware triage, greatly reducing the
numbers of applications that would require manual analysis to classify.
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