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TTAnayze: A Tool for Analyzing Malware

Abstract

Malware analysis is the process of determining the purpose and functionality of a given malware sample
(such as a virus, worm, or Trojan horse). This process is a necessary step to be able to develop effective
detection techniques for malicious code. In addition, it is an important prerequisite for the development of
removal toolsthat can thoroughly delete malware froman infected machine. Traditionally, malwareanalysis
has been a manual process that is tedious and time-intensive. Unfortunately, the number of samples that
need to be analyzed by security vendors on a daily basis is constantly increasing. This clearly reveals the
need for tools that automate and simplify parts of the analysis process.

In this paper, we present TTAnalyze, a tool for dynamically analyzing the behavior of Windows executa-
bles. To this end, the binary is run in an emulated operating system environment and its (security-relevant)
actionsare monitored. In particular, we record the Windows native system calls and Windows API functions
that the program invokes. One important feature of our system is that it does not modify the program that
it executes (e.g., through API call hooking or breakpoints), making it more difficult to detect by malicious
code. Also, our tool runs binaries in an unmodified Windows environment, which leads to excellent emu-
lation accuracy. These factors make TTAnalyze an ideal tool for quickly getting an understanding of the
behavior of an unknown malware.

I ntroduction

Malware, which is a generic term to denote all kinds of unwanted software (e.g., viruses, worms, or Trojan
horses), poses a major security threat to computer users. According to estimates, the financial loss caused
by malware has been as high as 14.2 billion US dollars in the year 2005 (Computer Economics, 2006).
Unfortunately, the problem of malicious code is likely to grow in the future as malware writing is quickly
turning into a profitable business (Symantec, 2005). Malware authors can sell their creationsto miscreants,
who use the malicious code to compromise large numbers of machinesthat can then be abused as platforms
to launch denial-of -service attacks or as spam relays. Another indication of the significance of the problem
isthat even people without any special interest in computers are aware of worms such as Nimda or Sasser.
This is because security incidents affect millions of users and regularly make the headlines of mainstream
NEWS SOUrCes.

The most important line of defense against malicious code are virus scanners. These scannerstypically
rely on a database of descriptions, or signatures, that characterize known malware instances. Whenever an
unknown malware sample is found in the wild, it is usually necessary to update the signature database ac-
cordingly so that the novel malware piece can be detected by the scan engine. To thisend, it is of paramount
importance to be able to quickly analyze an unknown malware sample and understand its behavior and ef-
fect on the system. In addition, the knowledge about the functionality of malware isimportant for removal.
That is, to be able to cleanly remove a piece of malware from an infected machine, it is usually not enough
to delete the binary itself. 1t is also necessary to removethe residues | eft behind by the malicious code (such
as unwanted registry entries, services, or processes) and undo changes made to legitimate files. All these
actions require a detailed understanding of the malicious code and its behavior.

The traditional approach to analyze the behavior of an unknown program is to execute the binary in a
restricted environment and observe its actions. The restricted environment is often a debugger, used by a
human analyst to step through the code in order to understand its functionality. Unfortunately, anti-virus
companies receive up to several hundred new malware samples each day. Clearly, the analysis of these
malware samples cannot be performed completely manually. Hence, automated sol utions are necessary.

One way to automate the analysis process is to execute the binary in a virtual machine or a simulated
operating system environment. While the program is running, its interaction with the operating system*
(e.g., the native system calls or Windows API calls it invokes) can be recorded and later presented to an

1Because the vast majority of malware is written for Microsoft Windows, the following discussion considers only this operating
system.



analyst. This approach reliefs a human analyst from the tedious task of having to manually go through each
single malware sample that is received. Of course, it might still be the case that human analysisis desirable
after the automatic process. However, theinitial results at least provides details about the program’s actions
that then help to guide the analyst’s search.

Current approaches for automatic analysis suffer from a number of shortcomings. One problemis that
malicious code is often equipped with detection routines that check for the presence of a virtual machine or
asimulated OS environment. When such an environment is detected, the malware modifiesits behavior and
the analysis delivers incorrect results. Maware also checks for software (and even hardware) breakpoints
to detect if the program is run in a debugger. This requires that the analysis environment is invisible to
the malicious code. Another problem is when the analysis environment does not monitor the complete
interaction with the system. When this happens, the malicious code could evade analysis. This might be
possible because there exist thousands of Windows API calls, often with arguments that are composed of
complex data structures. Furthermore, the malicious code could also interact directly with the operating
system via native system calls. Thus, the analysis environment has to be comprehensive and cover al
aspects of the interaction of a program with its environment.

In this paper, we describe TTAnalyze, atool that automates the process of analyzing malware to allow
a human analyst to quickly get a basic understanding of the actions of an unknown executable. Running a
binary under TTAnalyze results in the generation of a report that contains information to give the human
analyst avery good impression about the purpose and the functionality of the analyzed sample. This report
includes detailed data about modifications made to the Windows registry and to thefile system, information
about interactions with the Windows Service Manager and other processes, as well as acompletelog of al
generated network traffic.

The following list summarizes the key features of TTAnalyze:

e TTAnalyze uses emulation to run the unknown binary together with a complete operating system
in software. Thus, the malware is never executed directly on the processor. Unlike solutions that
use virtual machines, debuggers, or API function hooking, the presence of TTAnayzeis practically
invisible to malicious code.

e The analysis is comprehensive because our system monitors calls to native kernel functions as well
as callsto Windows API functions. It also provides support for the analysis of complex function call
argumentsthat contain pointersto other objects.

e TTAnalyzecan perform function call injection. Function call injection allows usto alter the execution
of the program under analysis and run our codein its context. This ability is required in certain cases
to make the analysis more precise.

The remainder of this paper is structured as follows. In Section , we present related work in the field
of malware analysis. Section discusses the design and implementation details of our proposed system.
Section provides an experimental evaluation of its effectiveness. Finaly, Section briefly concludes and
outlines future work.

Related Wor k

Analyzing unknown executablesis not a new problem. Consequently, many solutions already exist. These
solutions can be divided into two groups: static analysis and dynamic analysis techniques.

Static analysis is the process of analyzing a program’s code without actually executing it. In this pro-
cess, abinary is usually disassembled first.> Then, both control flow and data flow analysis techniques are
employed to draw conclusions about the functionality of the program. A number of static binary analy-
sis techniques (Christodorescu & Jha, 2003; Christodorescu, Jha, Seshia, Song, & Bryant, 2005; Kruegel,
Robertson, & Vigna, 2004) have been introduced to detect different types of malware. Static analysishasthe
advantagethat it can cover the complete program code and is usually faster than its dynamic counterpart. Its
main weaknessis that the code analyzed may not necessarily be the code that is actually run. In particular,
this is true for self-modifying programs that use polymorphic (Szor, 2005; Yetiser, 1993) and metamor-
phic (Szor, 2005) techniques and packed executables that unpack themselves during run-time (Oberhumer

2Disassembling denotes the process of transforming the binary code into corresponding assembler instructions.



& Molnar, 2004). Also, malicious code can make use of obfuscation techniques (Linn & Debray, 2003) to
thwart the disassembly step. The reason is that for certain instruction set architectures (most notably, Intel
x86), it is difficult to distinguish between code and data bytesin afile.

Dynamic techniques analyze the code during run-time. While these techniques are non-exhaustive, they
havethe significant advantagethat only thoseinstructionsare analyzed that the code actually executes. Thus,
dynamic analysis is immune to obfuscation attempts and has no problems with self-modifying programs.
When using dynamic analysis techniques, the question arises in which environment the sample should be
executed. Of course, running malware directly on the analyst’'s computer, which is probably connected
to the Internet, could be disastrous as the malicious code could easily escape and infect other machines.
Furthermore, the use of a dedicated stand-alone machine that is reinstalled after each dynamic test run is
not an efficient solution because of the overhead that is involved.

Running the executable in a virtual machine (that is, a virtualized computer) such as one provided by
VMware (VMware, 2006) is a popular choice. In this case, the malware can only affect the virtual PC and
not the real one. After performing a dynamic analysis run, the infected hard disk image is ssmply discarded
and replaced by a clean one (i.e., so called snapshots). Virtualization solutions are sufficiently fast. There
is amost no difference to running the executable on the real computer, and restoring a clean image is much
faster than installing the operating system on areal machine. Unfortunately, a significant drawback is that
the executable to be analyzed may determine that it is running in a virtualized machine and, as a result,
modify its behavior. In fact, a number of different mechanisms have been published (Robin & Irvine, 2000;
Rutkowska, 2006) that explain how a program can detect if it is run inside a virtual machine. Of course,
these mechanisms are also available for use by malware authors.

A PC emulator is a piece of software that emulates a personal computer (PC), including its processor,
graphic card, hard disk, and other resources, with the purpose of running an unmodified operating system.
It is important to differentiate emulators from virtual machines such as VMware. Like PC emulators,
virtualizers can run an unmodified operating system, but they execute a statistically dominant subset of
theinstructionsdirectly onthereal CPU. Thisisin contrast to PC emulators, which simulate al instructions
in software. Because all instructions are emulated in software, the system can appear exactly like a real
machine to a program that is executed, yet keep complete control. Thus, it is more difficult for a program
to detect that it is executed inside a PC emulator than in a virtualized environment. This is the reason why
we decided to implemented TTAnalyze based on a PC emulator.

Note that there is one observable difference between an emulated and a real system, namely speed of
execution. This fact could be exploited by malicious code that relies on timing information to detect an
emulated environment. While it would be possible for the emulator to provide incorrect clock readings to
make the system appear faster for processes that attempt to time execution speed, thisissueis currently not
addressed by TTAnalyze.

In addition to differentiating the type of environment used for dynamic analysis, one can also distinguish
and classify different types of information that can be captured during the analysis process. Many systems
focus on the interaction between an application and the operating system and intercept system calls or hook
Windows API calls. For example, a set of tools provided by Sysinternals (Russinovich & Cogswell, 2006)
alowsthe analyst to list all running Windows processes (similar to the Windows Task Manager), or to log
all Windows registry and file system activity. These tools are implemented as operating system drivers
that intercept native Windows system calls. As aresult, they are invisible to the application that is being
analyzed. They cannot, however, intercept and analyze Windows API calls or other user functions. On the
other hand, tools (Hunt & Brubacher, 1999) exist that can intercept arbitrary user functions, including all
Windows API cals. Thisistypically realized by rewriting target function images. The original functionis
preserved as a subroutine and callable through a trampoline. Unfortunately, the fact that code needs to be
modified can be detected by malicious code that implementsintegrity checking.

TTAnalyze uses a PC emulator and thus has complete control over the sample program. It can intercept
and analyze both native Windows operating system calls aswell as Windows API callswhilebeinginvisible
to malicious code. The complete control offered by a PC emulator potentially allows the analysis that is
performed to be even more fine-grain. Similar to the functionality typically provided by a debugger, the
code under analysis can be stopped at any point during its execution and the process state (i.e., registers and
virtual address space) can be examined. Unlike a debugger, however, our system does not have to resort
to breakpoints, which are known to cause problems when used for malicious code analysis (Vasudevan &
Yerraballi, 2005). The reason is that software breakpoints directly modify the executable and thus, can be



detected by code integrity checks. Also, malicious code was found in the wild that used processor debug
registers for its computations, thereby breaking hardware breakpoints.

System Description

TTAnayzeis atool for analyzing Windows executables (more precisealy, files conforming to the portable
executable (PE) fileformat (Microsoft PECOFF, 2006)). To thisend, the program under analysisis executed
inside a PC emulation environment and relevant Windows APl and native system calls are logged. In
the following sections, we describe in more detail the design and implementation of key components of
TTAndyze.

Emulation Environment

As mentioned previoudly, TTAnalyze uses a PC emulator to execute unknown programs. When designing
our system, we had to choose between different forms of emulation. In particular, we had to decide if the
hardware of a complete PC should be emulated so that an actua off-the-shelf operating system could be
installed, or if the processor should be emulated and our own implementation of (a subset of) the oper-
ating system interface should be provided. Virus scanners typically emulate the processor and provide a
lightweight implementation of the operating system interface (both native system calls and Windows API
calls). This approach allows a very efficient analysis process. Unfortunately, it is not trivial to make the
operating system stub behave exactly like the actual operating system, and the semantics between a real
system and the simulated one differ in many cases. These differences could be detected by malware, or
simply break the code. Thus, we decided to emulate an entire PC computer system, running an off-the-shelf
Windows XP on top. While the analysis is significantly slower compared to a virus scanner, the accuracy
of the emulation is excellent. Since our focusis on the analysis of the behavior of the binary, this trade-off
is acceptable.

TTAnayze uses Qemu (Bellard, 2005), an open-source PC emulator written by Fabrice Bellard, as its
emulator component. Qemu is afast PC emulator that properly handles self-modifying code. To achieve
high execution speed, Qemu employs an emulation technique called dynamic translation. Dynamic transla-
tion worksin terms of basic blocks, where abasic block is a sequence of one or moreinstructionsthat ends
with a jump instruction or an instruction modifying the static CPU state in a way that cannot be deduced
at trandlation time. Theideaisto first trandate a basic block, then execute it, and finally trandate the next
basic block (if atrandation of this block is not already available). The reason is that it is more efficient to
trandate several instructions at once rather than only a single one.

Of course, Qemu could not be used in our system without modification. First, it had to be transformed
from a stand-al one executable into a Windows shared library (DLL), whose exported functions can be used
by TTAnalyze. Second, Qemu’s translation process was modified such that a callback routine into our
analysis framework is invoked before every basic block that is executed on the virtual processor. This
alows us to tightly monitor the process under analysis.

Before a dynamic analysis run is performed, the modified PC emulator boots from a virtual hard disk,
which has Windows XP (with Service Pack 2) installed. The lengthy Windows boot-processis avoided by
starting Qemu from a snapshot file, which represents the state of the PC system after the operating system
has started.

Analysis Process

The analysis processis started by executing the (malware-)program in the emulated Windows environment
and monitoring its actions. In particular, the anaysis focuses on which operating system services are re-
quested by the binary (i.e., which system calls areinvoked). Every action that involves communication with
the environment (e.g., accessing the file system, sending a packet over the network, or launching another
program) requires a Windows user mode process to make use of an appropriate operating system service.
There is no way for a process to directly interact with a physical device, which also includes physical
memory. The reason for this stems from the design of modern operating systems, which prohibit direct
hardware access so that multiple processes can run concurrently without interfering with each other. Thus,
it is reasonable to monitor the system services that a process requestsin order to analyze its behavior.



On Microsoft Windows platforms, monitoring system service requests is not entirely straightforward.
The reason is that the actual operating system call interface, called native APl interface, is mostly un-
documented and not meant to be used directly by applications. Instead, applications are supposed to call
functions of the documented Windows API. 2 The Windows API is a large collection of user mode library
routines, which in turn invoke native API functions when necessary. The idea is that the Windows AP
adds a layer of indirection to shield applications from changes and subtle complexities in the native API.
In particular, the native APl may change between different Windows versions and even between different
service pack releases. On a Windows system, the native API is provided by the system filentd11.d11.
Parts of this interface are documented by Microsoft in the Windows DDK (Microsoft DDK, 2006) and the
Windows IFS kit (Microsoft IFS, 2006). Moreover, Gery Nebbett has written an unofficial documentation
of the native API (Nebbett, 2000), which covers about 90% of the functions.

Malware authors sometimes use the native API directly to avoid DLL dependencies or to confuse virus
scanner’s operating system simulations. For this reason, TTAnayze monitors both the Windows API func-
tion calls of an application and also its native API function calls. The task of monitoring which operating
system services are invoked by the program reguires us to solve two problems:

1. We must be able to precisely track the execution of the malware process and distinguish between
instructions executed on behalf of the malware process and those of other processes. Thisis essential
because the virtual processor does not only run the malware process, but also instructions of the
Windows operating system and of several Windows' user mode processes. Therefore, a mechanism
is required that enables TTAnalyze to determine for each processor instruction whether or not this
instruction belongs to the malware process.

2. We need an unobtrusive way for monitoring the accessed operating system services. That is, we have
to be able to determinethat a native API call or aWindows API call isinvoked without modifying the
malware code. That is, we cannot hook API functions or set debug breakpoints.

We accomplish the precise tracking of the malware process with the help of the CR3 processor register.
The CR3 register, which is also known as the page-directory base register (PDBR), contains the physical
address of the base of the page directory for the current process. The processor uses the page directory
when it trandlates virtual addresses to physical addresses. More precisely, to determine the location of the
page directory when performing memory accesses, the processor makes use of the CR3 register.

Windows assigns each process its own, unique page directory. This protects processes (in particular,
their virtual memory address space) from each other by ensuring that each process has its own virtua
memory space. The page directory address of the currently running process has to be stored in the CR3
processor register. Consequently, Windows|loadsthe CR3 register on every context switch. Thus, wesimply
have to determine which page directory address has been assigned to the malware process by Windows.
Then, we are able to efficiently determine whether or not the current instruction belongs to the test subject
under analysis by comparing the current value of the CR3 register to the page directory address of this test
subject.

Determining the physical address of the page directory of the test subject is the responsibility of a probe
component that is located inside the emulated Windows XP environment. This probe serves as a sensor in
the emulated environment and consists of akernel driver and aprogram that is runin user mode. Thetask of
the kernel driver isto locate the page directory address that belongsto the test subject and report its findings
back to the user mode process. The user mode component then informs TTAnalyze. Note that TTAnalyze
is outside the emulated environment, thus, communication between the probe and TTAnayze has to take
place over the virtual network that connects the emulated environment with its host system. To thisend, an
RPC server is used that runsinside the emulated PC.

The kernel driver is necessary because the page directory address is stored in a memory region that
is only accessible to the Windows NT kernel and its device drivers. More precisely, the page directory
address can be found as an attribute of that EPROCESS structure that corresponds to the test subject. The
EPROCESS structure is a Windows-internal data object that plays a key role in the way Windows manages
processes. For each process in the system, a corresponding EPROCESS structure exists. Thus, the device
driver has to walk the list of system processes (which consists of EPROCESS members) until it finds the
one corresponding to the process of the test subject. At this point, the appropriate page directory address

3The Windows API is documented by Microsoft in the Platform SDK (Microsoft Platform SDK,, 2006).



can be read. Note that the page table address of the test subject’s process has to be obtained before its first
instruction is executed. To this end, the process is created in a suspended state. Only after successfully
identifying the page directory addressiis the test subject allowed to run.

As mentioned previously, the second problem of our analysisis to monitor the invocation of operating
system functions.* This task can be solved by comparing the current value of the virtual processor’s in-
struction pointer (or program counter) register to the start addresses of al operating system functions that
are under surveillance. This comparison is performed in the callback routine of TTAnalyze, which Qemu
invokes at the start of each tranglation block. Note that the start address of a function always correspondsto
thefirst instruction in atrang ation block. The reason is that afunction call is a control transfer instruction,
and whenever a control transfer instruction is encountered, Qemu starts a new translation block. At this
point, TTAnalyzeisinvoked and can check the current value of the program counter.

A Windows application typically accesses operating system functions by dynamically linking to system
DLLsand calling their exported functions. Thus, we can extract the addresses of interesting functions sim-
ply from library export tables. For example, an application calls the Windows APl function CreateFile,
which is implemented in the shared library Kernel32.d11 when it wants to create afile. In this case,
determining the start address of CreateFile is easily possible by looking at corresponding entry in
Kernel32.d1l1l'sexport table (and then adding the base address of Kernel32.d11 toit, asDLLsmay
be loaded at a different base address).

Function Arguments

Using the system described in the previous sections, we are in a position to know which operating system
functions are used by an application. For example, if an application invokes CreateFile, we know that
afile was created. Unfortunately, we do not dispose of any more details (e.g., the name of the created file).
Obviously, we can improve the situation by analyzing the arguments of operating system function calls.
To this end, we have extended our analysis framework with the capability to automatically invoke user-
specified callback routines in TTAnalyze whenever the test subject calls one of the monitored operating
system functions. For each callback routine, the analyst can specify code to process or log the arguments
of the corresponding operating system function. For example, if the test subject calls the CreateFile
function, a TTAnalyze callback routine is invoked where one can access the argument that specifies the
name of the file to be created.

To be able to access an argument value of an operating system function, the callback routine has to first
read it from the emulated, or virtual, system by specifying its memory address and size. To see this, recall
that the TTAnalyze callback routine is running in a different memory address space than the process under
analysis. Thus, the writer of a callback routine has to know the size and structure of all function arguments.
Reading function call arguments in this fashion would be tedious and error-prone, certainly reducing the
number of callback functions. To address this problem, we desire a mechanism to automatically generate
the required code for reading the values of functions arguments from the virtual system. The goa isto
have the parameter list of a callback routine mirror the parameter list of its corresponding operating system
function. Whenever the callback routineisinvoked, all function argument values are automatically extracted
fromthevirtual system and then correctly copied into the arguments of the callback routine. In thisfashion,
the author of a callback function can access the arguments of an operating system function call by simply
reading the arguments of the callback routine.

To achievethe goal of generating the necessary C++ source code for reading the argumentsof afunction
call from the virtual system, we developed the generator component. This component is a stand-alone
program that can be run independently of TTAnalyze. Itstask is to generate the desired callback routine
stubs (or more precisely, stubs that include the code to handle the arguments). The generator component
reguires as input afile containing the declarations of all monitored operating system functions. By parsing
the function declarations, the generator is able to determine the sizes and structures of functions arguments
and can subsequently generate the appropriate C++ code for reading them.

The grammar for the generator’sinput file resembl es the grammar of the C programming language. The
differenceis that our grammar only supports declarations and no statements. Moreover, we have slightly
extended the C-syntax in two ways.

4We use the term operating system function as a generic term for both Windows API and native API functions.



1. Parameter declarations of functions may include the keywords [out], [in] or [inout]. These
keywords are used for specifying the direction of a parameter. It effects the point in time when an
argument isread. In or inout parameters are read when a system function call is invoked, while
out parameters are read when the function returns. If a direction specification is missing, in is
assumed by defaullt.

2. Array declarationsof theform [ARGx B] or [ARGx U] are possible. Such declarationsindicate that
the variable in front of [] isadynamic array, and that the size of this array is specified by another
function argument. The position of this size-specifying argument in the function parameter list is
indicated by the value of x. Thus, x represents an integer value larger than zero. The postfix B
further specifiesthat the size is given in bytes, while the postfix _U statesthat the sizeis givenin units
of the array base type. The special form [NT] is used for anull-terminated byte array (e.g., C strings
are treated as null-terminated byte arrays).

The reason for having to annotate array argumentsis that TTAnalyze has to know how to determine
the number of elements of an array during run-time in order to copy the right amount of data to
the callback routine. To this end, TTAnalyze can either be told about an argument that specifies
the number of array elements, or assume that an array is terminated by a null element. Both cases
need to be indicated by proper annotation. As an example, consider the function int main (int
argc, char xargv[]). Thisfunctionshould bedeclaredas int main (int argc, char
argv [NT] [ARG1_U] in our header file.

For our analysis, we had to manually annotate the function-prototypesin the Windows header files. In
particular, we had to assign appropriate qualifiers to output and array parameters.

Thereis another problem that we have to deal with when reading the values of function argumentsfrom
the virtual system. Unfortunately, it is not always immediately possible to read from the virtual address
space of a process in the emulated system. To understand this problem, consider that the physical main
memory of the emulated PC system simply is alarge malloc’ ed memory block on the host system. Thus,
TTAnayze can always read from the emulated main memory when supplying a physical address. When
supplying a virtual address in the context of the emulated system, however, this virtual address has to be
converted into a physical address first. Unfortunately, the possibility exists that the content referred to by
this virtual address is not present in the emulated physical memory, but only on the emulated hard disk
(i.e., the content is currently paged out). In this case, reading from the virtual system’s memory would
result in an error. There are also other cases where one is not able to directly retrieve the content for a
virtual address. The Windows MMU (memory management unit) uses lazy evaluation as often as possible
to save resources (Russinovich & Solomon, 2004). Lazy evaluation means to wait to perform atask until it
isrequired. In particular, in the beginning of a process’ lifetime, its page tables often do not include shared
libraries used by that process. Instead, the page tables are updated only when the processor first references
memory in the shared library.

Failing to read an argument of an operating system function call would be a serious drawback. Thus,
TTAnayze must be able to read the memory contents at any specified virtual address. To solve the problem
of memory content that is currently paged out, we can resort to the page fault handler of the emulated
operating system. More precisely, whenever we wish to access an addressthat is not present in the emulated
physical memory, we force the test subject to read from this virtual address. This read operation invokes
the page fault handler of the emulated operating system, which loads the appropriate memory page into the
emulated physical memory. When the handler has doneits work, the desired content can be easily obtained.

Code Injection

In the previous section, we mentioned the need of TTAnalyze to force the test subject to perform read
operations on its behalf. To this end, TTAnalyze has to change the flow of execution of the test subject.
Thisisachieved by injecting read instructionsinto itsinstruction stream. However, the ability to changethe
flow of execution of a programis not only useful for inserting read instructions. It can also be used to call
arbitrary functions exported by a DLL (e.g., Windows API functions). This ability to insert function calls
can be used to improve the quality of the analysis resultsin the following situations:

e File created or opened - The Windows API function CreateFile and its native APl equivalent
NtCreateFile can both be used for creating as well as opening afile. Thereis no way to reli-



ably differentiate between the opening and the creation of a file alone from the arguments used in
the function call. To differentiate between these two situations, we have to insert a function that
checks whether thefile already exists or not. The same situation arises when the Windows APl func-
tion RegCreateKeyEx iscaled, as RegCreateKeyEx can be used for both creating as well as
opening aregistry key.

e File or directory - In several situations, it is not possible to decide if a filename refersto afile or a
directory from the function arguments a one.

¢ Unknown handles - TTAnayze typically monitors all Windows APl and native API function calls
that return handles. As aresult, TTAnalyze knowsto what resourcesthese handles refer to. However,
handles might be inherited from another process or obtained via a operating system function that
is not monitored. In these cases, function call insertion is required to extract information about an
otherwise unknown handle.

Because TTAnalyzeuses emulationto runthetest subject, it is easy to insert additional instructions (such
as read instructions) into Qemu’s trandation blocks. Also, function calls are easy to inject, as a function
call is nothing more than a jump to an address (the function start) that is preceded by a push of all function
arguments and the return address onto the stack. The main difficulty when performing a function cal in
the context of the emulated process is that the arguments expected by this function need to be pushed onto
the emulated stack. Pushing necessary arguments requires one to serialize and copy all argumentsfrom the
host memory into the memory of the emulated system, possibly involving complex function arguments that
contain pointers to other structures. This process is the opposite of reading arguments from the emulated
system into the host environment. This allows us to reuse the generator component (described in Section )
to automatically generate the necessary code to push the arguments onto the emulated stack.

Analysis Report

TTAnalyzeis atool for analyzing malware. While, in principle, arbitrary functions can be monitored, we
provide a number of callback routines that analyze and log security-relevant actions. After arun on atest
sample, the recorded information is summarized in a concise report. This report contains the following
information:

1. General Information - This section contains information about TTAnalyze'sinvocation, the command
line arguments, and some general information about the test subject (e.g., file size, exit code, time to
perform analysis, ...).

2. File Activity - This section covers the file activity of the test subject (i.e., which files were created,
modified, ...).

3. Registry Activity - In this section, all modifications made to the Windows registry and all registry
values that have been read by the test subject are described.

4. Service Activity - This section documents al interaction between the test subject and the Windows
Service Manager. If the test subject starts or stops a Windows service, for example, this information
islisted here.

5. Process Activity - In this section, information about the creation or termination of processes (and
threads) as well as interprocess communication can be found.

6. Network Activity - This section provides a link to a log that contains all network traffic sent or
received by the test subject.

Evaluation

To demonstrate the capability of TTAnalyze to successfully monitor the actions of malicious code, we ran
dynamictests on current malware samples. Then, we compared the output of our tool to atextual description
for each sample. The descriptions that we used were provided by Kaspersky Lab (Kaspersky Lab, n.d.).



The goal of the evaluation was to determine to which extent our analysis results match the characterizations
provided by this well-known anti-virus vendor.

For the selection of our test subjects, we consulted Kaspersky's list of the most prevalent malware
samples published in December 2005. Unfortunately, it was not possible to obtain samples for all entries
on these lists. However, we were able to select ten different malware programs that represent a good mix
of different malicious code variants currently popular on the Internet. For some of the names on the list,
we received a number of different samples. Some of these samples were packed using different executable
packer programs, others were not even recognized as valid Windows PE executables. From this pool, we
chose one working sample for each malware type. Then, we scanned all samplesfor our experiments by the
online virus scanner provided by Kaspersky and made sure that they were all recognized correctly.

I
)

Malware name
Email-Worm.Win32.Doombot .B
Email-Worm.Win32.Netsky.B
Email-Worm.Win32.Netsky.D
Email-Worm.Win32.Netsky.Q
Email-Worm.Win32.Sober.Y
Email-Worm.Win32.zafi.D
Net-Worm.Win32.Mytob.BD
Net-Worm.Win32.Mytob.BK
Net-Worm.Win32.Mytob.C
Net-Worm.Win32.Mytob.J

Registry | Process | Service

O00a000000

Table 1: TTAnalyze Test Results

Theresults of our experimentsare shownin Table. Inthistable, a 1
our tool exactly matches the provided description. However, in a surprising number of cases (indicated by
the [ symbol), the output of our tool differ
confirmed that our system wasindeed producing correct results, and that the behavior providedin the textual
description was not reproducible. The differences between the output of our tool and the virus descriptions
can have several reasons. In many cases, the general behavior reported by TTAnalyze confirmed the textual
description, but the details did not match precisely. For example, both sources reported in agreement that a
certain file was created in the system directory, but the file names were different. This can occur when the
malicious code chooses random filenames or a name from alist of optionsthat are not exhaustively covered
by the malware description. Another reason for differences between our output and a textual description
could be that the virus scanner identified an executable as a member of a certain malware variant, whilein
fact, the behavior of our particular malware instance has sightly changed.

In three cases, which are indicated by the 4 symbol, our analysis failed to recognize the creation of
certain Windows registry values. The reason was that these registry entries were created by the client-server
subsystem process csrss . exe on behalf of the malicious code. Because our analysis was only recording
the actions of the malware itself, we only observed the interaction of the sample with the csrss.exe
process. However, there is no inherent restriction in TTAnalyze's design that prohibits monitoring more
than one process. Thus, by also monitoring the actions of those processes that are interacting with (or
started by) the malicious code, such cases can be successfully covered.

Conclusions and Future Work

Because of the window of vulnerability that exists between the appearance of a new malware and the point
where an appropriate signature is provided by anti-virus companies, every new maware poses a serious
threat to computer systems. This paper introduced TTAnayze, a system to analyze the behavior of an
unknown program by executing the code in an emulated environment. The goal of the analysis processisto
gain aquick understanding of the actions performed by malicious code with the general aim of reducing the
window of vulnerability. To this end, our tool records the invocation of security-relevant operating system
functions (both Windows API functions and native kernel calls).



Because the sample program is executed completely in software on a virtual processor, TTAnalyze can
tightly monitor the process without requiring any modificationsto its code. This allows the system to easily
handle self-modifying code and code integrity checks, two features commonly observed in malware. Fur-
thermore, the emulated system presents itself to running processes exactly like areal system. This makes
it more difficult for malware to detect the analysis environment when comparing our solution to virtual
machine or debugging environments. Finally, TTAnalyze uses a complete and unmodified version of Win-
dows XP as the underlying operating system in which the unknown program is started. Thus, TTAnayze
provides a perfectly accurate environment for malicious code.

During the course of testing TTAnalyze with real malware samples, it became apparent that dynamic
analysis alone is often not sufficient to obtain the complete picture of the behavior of an unknown exe-
cutable. Thereason isthat only asingle execution path can be examined during a particular analysisrun. To
address this problem, we aim to extend our analysis so that multiple execution paths can be explored. For
example, the process under analysis could be cloned when the emulator encounters a conditional branch.
Then, the branch predicate is inverted in one process, causing both processes to follow alternative paths of
the program. This could enable us to capture the behavior of an executable in different environments, with
different inputs, or under special circumstances (e.g., the executableis run at a certain day of the year such
as the now infamous Michelangel o virus that becomes active on the birthday of the famous artist).
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