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Abstract

We are witnessing an increasing complexity in the mal-
ware analysis scenario. The usage of polymorphic tech-
niques generates a new challenge: it is often difficult to
discern the instance of a known polymorphic malware from
that of a newly encountered malware family, and to evaluate
the impact of patching and code sharing among malware
writers in order to prioritize analysis efforts.

This paper offers an empirical study on the value of
exploiting the complementarity of different information
sources in studying malware relationships. By leveraging
real-world data generated by a distributed honeypot de-
ployment, we combine clustering techniques based on static
and behavioral characteristics of the samples, and we show
how this combination helps in detecting clustering anoma-
lies. We also show how the different characteristics of the
approaches can help, once combined, to underline relation-
ships among different code variants. Finally, we highlight
the importance of contextual information on malware prop-
agation for getting a deeper understanding of the evolution
and the “economy” of the different threats.

1. Introduction

Malware plays a major role in today’s Internet threat sce-
narios. Breaking into vulnerable systems and installing ma-
licious code to remotely control user PCs puts an attacker
into the position to undertake a number of illicit activities
ranging from data confidentiality breach (e.g., through key-
logging activities), denial of service attacks, to the genera-
tion of unsolicited traffic.

Several indicators suggest an exponential explosion of
the number of newly generated malicious samples per day.
For instance, according to [7], the amount of samples sub-
mitted to VirusTotal [25], a popular virus scanning plat-
form, is in the order of millions of samples per month. Such

numbers translate into a daily load of approximately 30,000
samples per day. This load can be partially explained by
the easiness with which malware writers can generate new
code by personalizing existing code bases, or by re-packing
the binaries using code obfuscation tools [21,22,27]. In ad-
dition, malware sample counts are biased by the increasing
usage of polymorphic techniques [5]. For instance, worms
such as Allaple [10] take advantage of these techniques to
mutate the binary content of the executable file at each prop-
agation attempt.

Such an explosion in the number of samples increases
the task of the security analyst. On the one hand, a com-
plete picture on the complexity of the malware landscape
is possible only by discerning polymorphic instances from
new variants. On the other hand, to get a full understand-
ing of the malware landscape we need to go further, and
get quantitative insights on the interrelations among the dif-
ferent families, and on the extent to which malware writers
share code and produce patches to known variants.

This paper presents an empirical study based on one
year of data collected by a distributed honeypot deploy-
ment, SGNET [17]. By taking advantage of protocol learn-
ing techniques, SGNET is able to emulate code injection
attacks in a protocol agnostic way, and without prior knowl-
edge of the vulnerabilities being exploited. Because of its
properties and its deployment in a large number of different
network domains, the SGNET dataset is representative of
the current malware landscape for a specific class of mal-
ware samples, namely samples that propagate by means of
server-side code injection attacks.

Many different tools and techniques have been devel-
oped in order to study the malware landscape. Previ-
ous work proposed different approaches to cluster malware
samples according to either their static structural charac-
teristics (such as in [26]) or their dynamic behavior [4].
Despite the general consensus in the research community
that static approaches are not suitable to cluster and clas-
sify malware, we show in this work that most polymorphic
engines in the wild have a low level of sophistication and



that simple static techniques can still be useful for cluster-
ing malware. More specifically, we show the effectiveness
of a very simple pattern generation technique in classifying
the propagation strategy and the structural characteristics of
the malware samples observed by the SGNET dataset.

We show how, by combining clustering techniques based
on either static or behavioral characteristics of the malware
samples, we are able to detect clustering anomalies gener-
ated by different environmental causes. Moreover, we show
how the combination of the two feature sets offers insights
on patching and code sharing practices in the observed mal-
ware samples that would be invisible to any clustering tech-
nique based on a single feature type.

Many malware collection techniques solely focus on the
collection of malware binaries. We underline, through prac-
tical examples, the usefulness of combining the knowl-
edge generated by malware classification approaches with
contextual information on malware propagation generated
by the SGNET deployment. We show the importance of
such information to generate rich, structured knowledge
that helps the security analyst to obtain a better understand-
ing of the “economy” of the different threats and on the
modus operandi of the individuals at their root cause.

2. Related work

Previous malware clustering approaches that statically
analyze the samples can be grouped into systems that dis-
assemble the binary and systems that do not. The cluster-
ing system presented by Ghorghescu in [11] requires a prior
disassembling step and then performs a clustering of the
binaries by comparing their basic blocks. In contrast, the
authors of [14] determine the similarity of two binaries by
comparing a hex dump of their code segments. Recently,
Wicherski presented peHash, a system for hashing PE bi-
naries in such a way that polymorphic binaries receive the
same hash value [26]. peHash is able to statically classify a
large number of samples by grouping them according to the
portions of the PE header that are not mutated by polymor-
phic packers.

The first attempts to cluster malware according to its be-
havior (i.e., requiring a dynamic analysis of the binaries)
were based on system call traces. For example, the system
for classifying malicious binaries described in [15] deter-
mines the similarity of two binaries by comparing system
call traces of their execution. However, the performance
of the system is poor because system call traces are usu-
ally large in size and, thus, result in long comparison times.
Bailey et al. were the first to build a clustering system [3]
that described a sample’s behavior in more abstract terms.
The authors evaluated their prototype implementation with
several hundreds of samples. Although the clustering re-
sults were correct, the system suffers from the simplicity of

Sensor 1

GW
Sensor 2

Sensor 3

Sensor 4

Sample
Factory #1

Sample
Factory #2

Shellcode
Handler

Figure 1. SGNET architecture

the behavioral descriptions that are not able to precisely ex-
press the behavior. Moreover, the presented system is not
scalable because it requires the computation of O(n2) dis-
tances. Holz was proposing a classification system in [12]
for malware samples that uses the analysis results of the
CWSandbox sandbox system for computing the similarity
of two samples. The approach, based on supervised ma-
chine learning techniques, relies on commercial antivirus
labels to build the initial training set. Different works [3, 7]
have pointed out in the past the limitations in the usage of
such labels for malware classification purposes.

In this paper, we make use of the behavior-based cluster-
ing system provided publicly as part of the dynamic analysis
platform called Anubis [1, 6] (i.e., see Section 3.3).

3. SGNET and EPM clustering

The analysis carried out in this paper is based on a freely
accessible honeypot dataset, SGNET [17]. In contrast to
other malware collections, SGNET focuses on the collec-
tion of detailed information on code injection attacks and
on the sources responsible for these attacks. Each mal-
ware sample collected by the deployment is, therefore, en-
riched by contextual information on the attacks, the evolu-
tion of the attack in time, and on the structure of the code
injection itself. The contextual information provided by the
SGNET dataset is generated by an information enrichment
approach [18] that aggregates data generated by different
analysis tools such as VirusTotal [25] and Anubis [1, 6].

3.1. The SGNET dataset

SGNET is a distributed honeypot deployment focusing
on the study of code injection attacks. SGNET was origi-
nally presented in [17], and then presented with further de-



tails in [16]. SGNET takes advantage of protocol learning
techniques to address a trade-off between the need to re-
trieve rich information about the observed activities by pro-
longing as much as possible the conversation with clients
and the need to reduce the resource and maintenance costs
inherent in a distributed deployment. By using ScriptGen
[19,20], SGNET honeypots are able to model protocol con-
versation through a Finite State Machine (FSM) model and
use such models to respond to clients for well-known ac-
tivities. Whenever a new/unknown activity is encountered,
SGNET honeypots are able to dynamically proxy the con-
versations to a honeyfarm, and take advantage of the real
service implementation to handle the interaction.

Figure 1 shows the main components of the SGNET de-
ployment. SGNET is composed of multiple low-cost sen-
sors whose FSM model is kept in sync by a central en-
tity, the gateway. Whenever a new activity is encountered,
SGNET honeypots require the instantiation of a new sample
factory to the central gateway. The sample factory, based on
Argos [23], acts as an oracle and provides to the sensors the
required protocol interaction and, through memory tainting,
detects and provides information on successful code injec-
tion attacks. Such information is used by the gateway to
apply the ScriptGen algorithm and refine the FSM knowl-
edge. After having seen a sufficient number of samples of
the same type of interaction, SGNET sensors are, therefore,
able to handle autonomously future instances of the same
activity leveraging the newly built FSM refinement.

The memory tainting information generated by Argos,
combined with simple heuristics, allows SGNET honeypots
to identify injected shellcodes. SGNET takes advantage
of part of the Nepenthes [2] modules to understand the in-
tended behavior of the observed shellcodes and emulate the
network actions associated to it.

All the information collected during the interaction of
the different SGNET entities is stored in a database, and
fed into an information enrichment component [18] that is
in charge of adding additional metadata on the attacking
sources, and on the collected malware. Among the differ-
ent information sources, the most relevant to this work are
the behavioral information generated by Anubis [6], and the
AV detection statistics generated by VirusTotal [25]. Ev-
ery malware sample collected by the SGNET infrastructure
is, in fact, automatically analyzed by to these two services,
and the resulting analysis reports are stored in the SGNET
dataset to enrich the knowledge about the injection event.

3.2. EPM clustering

The SGNET dataset provides information on the differ-
ent phases of each observed code injection attack. In [17],
we show that SGNET is structured upon an epsilon-gamma-
pi-mu (EGPM) model, an extension of the model initially

proposed in [9]. The EGPM model structures each injec-
tion attack into four distinct phases:

• Exploit (ε). The set of network bytes being mapped
onto data which is used for conditional control flow
decisions. This consists in the set of client requests
that the attacker needs to perform in order to lead the
vulnerable service to the failure point.

• Bogus control data (γ). The set of network bytes be-
ing mapped into control data which hijacks the control
flow trace and redirects it to somewhere else.

• Payload (π). The set of network bytes to which the
attacker redirects the control flow through the usage of
ε and γ.

• Malware (µ). The binary content uploaded to the vic-
tim through the execution of π, and that allows the at-
tacker to run more sophisticated operations that would
be impossible in the limited space normally available
to the payload π.

In order to exploit the SGNET information, it is neces-
sary to cope with the degree of variation introduced by the
different propagation strategies. An example of this varia-
tion is the polymorphic techniques used to mutate the con-
tent of the payload and of the malware. However, we can
have even simpler cases, such as the usage of a random
filename in the FTP request used to download the malware
sample to the victim.

Section 2 discussed several existing techniques for the
quick classification of polymorphic samples starting from
static features. Because of the unique characteristics of the
dataset at our disposal, we have chosen not to reuse these
techniques, and to introduce a new, simple pattern discov-
ery technique, sufficiently generic to be applied indepen-
dently to exploit, shellcode and malware features. We call
this technique EPM clustering. The EPM clustering tech-
nique is a simplification of the multidimensional clustering
technique described by Julisch in [13] and used in the con-
text of IDS alerts. This technique is intentionally simple,
and could be easily evaded in the future by more sophis-
ticated polymorphic engines. Nevertheless, although it is
simple, in practice, it proved to be sufficient to deal with
the current sophistication level of the malware samples ob-
served in the SGNET dataset. EPM clustering is based on
the assumption that any randomization performed by the at-
tacker has a limited scope. We assume that any polymor-
phic or randomization technique aims at introducing vari-
ability only in certain features of the code injection attacks.
Since the randomization of each feature has a cost for the
attacker, we can assume that it will always be possible to
take into account a sufficiently large amount of features to
detect a certain amount of invariants useful for recognizing
a certain class of attacks.



Dim. Feature # invariants
Epsilon FSM path identifier 50

Destination port 3
Pi Download protocol (FTP/HTTP/...) 6

Filename in protocol interaction 22
Port involved in protocol interaction 4
Interaction type (PUSH/PULL/central) 5

Mu File MD5 57
File size in bytes 95
File type according to libmagic signatures 7
(PE) Machine type 1
(PE) Number of sections 8
(PE) Number of imported DLLs 7
(PE) OS version 1
(PE) Linker version 7
(PE) Names of the sections 43
(PE) Imported DLLs 11
(PE) Referenced Kernel32.dll symbols 15

Table 1. Selected features

For instance, we observed that polymorphic techniques
such as that of the Allaple worm [10] obfuscate and ran-
domize the data and code sections of the executable files,
but do not normally perform more expensive operations
such as relinking, or leaving invariants when looking at the
Portable Executable (PE) headers.

EPM clustering is composed by 4 different phases,
namely feature definition, invariant discovery, pattern dis-
covery and pattern-based classification. The technique is
applied independently to the three distinct dimensions of
the EGPM model: ε, π and µ.1

Phase 1: feature definition

The feature definition phase consists of defining a set of fea-
tures that have proven to be useful in our experiments to
characterize a certain activity class. Table 1 shows the list
of features that we have taken into consideration to charac-
terize the code injections in each dimension of the Epsilon-
Pi-Mu space.

Most of the exploit classification is based on the infor-
mation provided by the interaction of the attacker with the
ScriptGen FSM models. Because of the way FSM models
are built [20], a given FSM path incorporates together pro-
tocol features and specificities of a certain implementation.
If all the network interactions take advantage of the same
username, or the same NetBios connection identifiers, such
parameters will be part of the generated model, and will be
differentiated from other exploit implementations.

The Nepenthes shellcode analyzer provides information
on the intended behavior of each shellcode collected by the
SGNET deployment. Such information includes the type
of protocol involved in the interaction (e.g., FTP, HTTP, as
well as some Nepenthes-specific protocols), the filename

1We do not consider γ in the classification due to lack of host-based
information in the SGNET dataset.

requested in the interaction (when available) and the in-
volved “server” port. Depending on the involved protocol
and on the entity interacting with the victim, we distinguish
also between three types of interaction: 1) PUSH-based,
in which the attacker actively connects to the victim and
pushes the sample. 2) PULL-based (also known as phone-
home), in which the victim is forced to connect back to the
attacker and download the sample. 3) Based on a central
repository, in the case in which the PULL-based download
interacts with a third party different from the attacker itself.

The malware dimension, because of the extensive use of
polymorphic techniques, requires a higher number of at-
tributes in order to correctly classify samples. We have
taken into consideration simple file properties, such as its
size, as well as Portable Executable information extracted
from the samples taking advantage of the PEfile [8] library.
In order to identify non-polymorphic samples, the MD5
of the sample was also considered as a possible invariant.
Looking at the level of sophistication of the SGNET mal-
ware collection, PE header characteristics seem to be more
difficult to mutate over different polymorphic instances.
These characterictics, thus, are good discriminants to dis-
tinguish different variants, since a change in their value is
likely to be associated to a modification or recompilation of
the existing codebase.

Clearly, all of the features taken into account for the clas-
sification could be easily randomized by the malware writer
in order to evade our static clustering approach. More com-
plex (and costly) polymorphic approaches might appear in
the future leading to the need to generate more sophisticated
techniques. This justifies the interest in continuously carry-
ing on the collection of data on the threat landscape and on
the study of its future evolution.

Phase 2: invariant discovery

For each of the features defined in the previous phase, the
algorithm searches for all the invariant values. An invari-
ant value is a value that is not specific to a certain attack
instance (it is witnessed in multiple code injection attacks
in the dataset), that is not specific to a certain attacker (the
same value is used by multiple attackers in different attack
instances) and is not specific to a certain destination (mul-
tiple honeypot IPs witness the same value in different in-
stances). An invariant value is, therefore, a “good” value
that can be used to characterize a certain event type.

The definition of invariant value is threshold-based:
Throughout this work, we consider a value as invariant if
it was seen in at least 10 different attack instances, and if it
was used by at least three different attackers and witnessed
on at least three honeypot IPs. Table 1 shows the amount of
invariant values discovered for each dimension.
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Figure 2. Pattern discovery starting from a
limited number of invariants (in bold)

Phase 3: pattern discovery

Once the invariant values are defined on each attack fea-
ture, we look at the way by which the different features
have been composed together, generating patterns of fea-
tures. As exemplified in Figure 2, we define as pattern a
tuple T = v1, v2, ..., vn where n is the number of features
for the specific EPM dimension and vi is either an invariant
value for that dimension or is a “do not care” value.

The pattern discovery phase looks at all the code injec-
tion attacks observed in the SGNET dataset for a certain
period, and looks at all the possible combinations of dis-
criminant values for the different features.

Phase 4: pattern-based classification

During this phase, the previously discovered patterns are
used to classify all the attack instances present in the
SGNET dataset and group them into clusters. Multiple pat-
terns could match the same instance: For example, the in-
stance 1, 2, 3 would be matched by both the pattern ∗, 2, 3
and the pattern ∗, ∗, 3. Each instance is always associated
with the most specific pattern matching its feature values.
All the instances associated to the same pattern are said to
belong to the same EPM cluster.

3.3. Clustering using static and behavioral
features

The EPM classification technique described in Section
3.2 provides a fast and simple tool to explore the interre-
lationships between exploits, injected payloads and the re-
sulting malware. By looking independently at exploit, shell-
code and malware features, the EPM classification allows us
to group attack events into clusters. For the sake of clarity,
we will refer in the rest of the paper to E-clusters, P-clusters
and M-clusters to identify all the groups sharing the same
classification pattern over the exploit (E), payload (P) and
malware (M) dimension respectively.

In parallel to the EPM classification of the malware and
of its propagation strategies, we take into consideration the
behavior-based malware clustering provided by Anubis [1,
6].

The clustering mechanism of Anubis has been described
in detail in [4]. It is a behavior-based clustering system that
makes use of the Anubis dynamic analysis system for cap-
turing a sample’s behavior. More concretely, the system
works by comparing two samples based on their behavioral
profile. The behavioral profile is an abstract representation
of a program’s behavior that is obtained with the help of
state-of-the-art analysis techniques such as data tainting and
the tracking of sensitive compare operations. The clustering
system is scalable by avoiding the computation of all O(n2)
distances.

Clusters of events associated to the same behavior ac-
cording to Anubis behavior-based clustering will be re-
ferred to as B-clusters in the rest of this paper.

In the next session, we explore the information at our dis-
posal in the SGNET dataset by means of EPM relations. We
show how the combination of approaches based on static
or behavioral characteristics of malware samples can be of
great help in obtaining a better understanding of the differ-
ent threats. Finally, we underline the value of the contex-
tual information on malware propagation to add semantics
to the different malware groups and acquire insights about
the modus operandi of the malware writers.

4. Results

For this work, we analyzed all information that was col-
lected by our SGNET deployment in the period from Jan-
uary 2008 to May 2009. During this period, the deployment
collected a total of 6353 malware samples, 5165 of which
could be correctly executed in the Anubis sandbox. This is
consistent with the information reported in [7]. Note that
due to failures in Nepenthes download modules, some of
the collected samples, unfortunately, are truncated or cor-
rupted, and, as a consequence, cannot be analyzed by a dy-
namic analysis system.

4.1. The big picture

By running the EPM classification technique described
in Section 3.2, we have discovered a total of 39 E-clusters,
27 P-clusters and 260 M-clusters corresponding to the same
number of groups. The analysis of the behavioral charac-
teristics of the 5165 samples led to the generation of 972
B-clusters.

Figure 3 graphically represents the relationships between
E-, P-, M- and B-clusters. Starting from top to bottom, the
first layer of groups corresponds to the exploits, the second
to the payloads, the third to the malware grouped according
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Figure 3. EPM relationships in the SGNET dataset and their comparison to B-clusters

to static information, and the last one to malware grouped
according to its behavior. Because of space limitations, we
have represented here only the E-, P-, M-, and B- clusters
grouping together at least 30 attack events. Figure 3 is there-
fore a simplified, yet, representative view of the reality. We
can identify a set of interesting facts:

• The number of exploit/payload combinations is low
with respect to the number of different M-clusters.
Most malware variants seem to be sharing few distinct
exploitation routines for their propagation.

• The same payload (P-cluster) can be associated to mul-
tiple exploits (E-clusters).

• The number of B-clusters is lower than the number of
M-clusters. Some M-clusters are likely to correspond
to variations of the same codebase, and, thus, maintain
very similar behavior.

In the following section, we dig deeper into some of the
identified relations to underline the value of considering dif-
ferent standpoints.

4.2. Clustering anomalies

Clustering techniques relying on behavioral features are
known to be subject to misclassification due to anomalies
in the extraction of these features. On the one hand, the
amount of variability in the behavioral profiles of some
samples and their interaction with clustering thresholds may
lead to clustering artifacts. On the other hand, the sample
behavior may be affected by external conditions (e.g., avail-
ability of C&C servers) that affect its profile and can lead to
misclassifications.

These problems are potentially very difficult to identify.
In this section, we show how the combination of clustering
approaches based on both static and dynamic information
can be helpful in systematically identifying and filtering out
clustering anomalies.

When going into the details of the relationships between
M-clusters and B-clusters (details that do not appear in Fig-
ure 3 because of the filtering choice), we discovered a large
number of B-clusters composed of a single malware sample.
860 B-clusters out of 972 are composed of a single malware
sample and are associated to a single attack instance in the
SGNET dataset.

Comparing these size-1 B-clusters with the associated
M-clusters, we can identify a small number of size-1 B-
cluster having a 1-1 association with a static M-cluster.
These cases are likely to be associated to infrequent mal-
ware samples whose infection was observed by the SGNET
deployment a very limited number of times.

In most of the other cases, instead, the size-1 B-clusters
are associated to larger M-clusters, mostly associated to at
least another, larger B-cluster. By manually looking at the
behavioral profiles of the samples affected by this anomaly,
we could not discern substantial differences from the be-
havior of the larger B-cluster. We believe these clusters to
have been incorrectly clustered, a bias in clustering likely
to be associated to the employment of supervised clustering
techniques (single linkage hierarchical clustering) in Anu-
bis clustering [4].

This is corroborated by other information available in the
SGNET dataset: Figure 4 shows information on the names
assigned to these misclassified samples by a popular AV
vendor (top), and on the propagation strategy observed in
the SGNET dataset in terms of EP coordinates (bottom).
Most of the samples are classified as being different vari-
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Figure 4. Characteristics of the size-1 clus-
ters. On the top, AV names associated to the
malware samples by a popular AV vendor. On
the bottom, propagation strategy used by the
samples in terms of combination of E and P
clusters.

ants of the Rahack worm (also known as Allaple), and have
been all pushed with a very specific P-pattern, P-pattern 45.
This P-pattern is characterized by a PUSH-based download,
in which the attacker forces the victim to receive the sample
on a specific port, TCP port 9988. For all these reasons, all
these samples seem to be highly related.

This anomalous condition would have been impossible
to detect by looking solely at B-clusters: it would not have
been possible to discern behaviors uniquely associated to a
specific malware sample from this type of misclassification.

We have also detected more subtle clustering anomalies
generated by changes in the context of the malware exe-
cution. For instance, M-cluster 13 is a polymorphic mal-
ware associated to several different B-clusters. The cluster
is characterized by a very specific size, number of sections,
and even by specific names for the different sections as it is
possible to see by looking at the pattern invariant features:

{
MD5=’*’, size=59904,
type=‘MS-DOS executable PE for

MS Windows (GUI) Intel
80386 32-bit’,

machinetype=332,
nsections=3,
ndlls=1,
osversion=64,
linkerversion=92,
sectionnames=‘.text\x00\x00\x00,

rdata\x00\x00\x00,
.data\x00\x00\x00’

importeddll=‘KERNEL32.dll’,
kernel32symbols=‘GetProcAddress,

LoadLibraryA’
}

Seeing the rather large number of invariant features (only
the MD5 hash is associated to a “do not care” field), we can,
therefore, say that the cluster is rather specific.

This cluster is peculiar for the amount of similarities,
and yet differences, with the behavior normally associated
with the Allaple worm. Looking at the EPM classifica-
tion, this M-cluster shares the same propagation vector as
the samples classified by AV vendors as Allaple/Rahack.
The associated pattern in the M dimension is slightly differ-
ent though: different size, linker version and differences in
the Kernel32 symbols. In both cases, the samples are poly-
morphic: the MD5 is not an invariant feature of the cluster.
Interestingly, the polymorphic pattern is different: accord-
ing to the SGNET data, Allaple mutates its content at each
attack instance, while malware samples belonging to the M-
cluster 13 seem to mutate their content according to the IP
address of the attacker. The same MD5 hash appears multi-
ple times in multiple attack instances generated by the same
attacking source towards multiple honeypots, but because
of the relevance constraints defined in Section 3.2, the hash
is not chosen as a relevant feature.

Looking manually at the different behavioral reports for
some of the behavioral clusters, we see that a number of
samples exhibit different behavior because of environmen-
tal conditions. Upon execution, they try to resolve the name
“iliketay.cn”, and download from that domain additional
components to be executed. Among the different behav-
ioral clusters, one cluster is characterized by the download
and execution of two separate components from the mal-
ware distribution site, while another cluster is characterized
by the successful download of a single component. In both
cases, the activity leads to the connection to an IRC server,
that provides commands instructing the process to down-
load additional code from other web servers. In a different
behavioral cluster, the DNS resolution for the name “ilike-
tay.cn” is unsuccessful: the entry was probably removed



from the DNS database2.
This real-world example shows the usefulness of cluster-

ing based on static features in pinpointing clustering aberra-
tions produced by the analysis of behavioral profiles. Sam-
ples that are apparently unrelated when purely looking at
their behavioral profiles, are discovered to be related when
analyzing their static characteristics. Once detected, these
problems can be fixed by, for instance, re-running the mis-
configured samples multiple times. We have experimentally
seen on a limited number of samples that re-execution is in-
deed very effective in eliminating these anomalies. While
the generation of multiple behavioral profiles for all the
samples would be too expensive and probably unnecessary
in most of the cases, the comparison with static analysis
techniques allows to detect small groups of samples for
which it would be useful to repeat the behavioral analysis
to improve consistency.

4.3. The value of the propagation context

When looking at Figure 3, we can identify a considerable
amount of cases in which a B-cluster is split into several
different M-clusters. In order to get a better understand-
ing on the motivations underlying these splits, we have se-
lected two of the biggest B-clusters associated to multiple
M-clusters.

The behavioral profiles generated by Anubis are obvi-
ously limited in time. At the time of writing, each behav-
ioral profile corresponds to an execution time of four min-
utes. While such a behavioral profile includes information
on the generated network traffic, this information is not suf-
ficient to understand the dynamics of the malware propaga-
tion. This is especially true for bots, whose behavior de-
pends on external commands generated by a bot-herder ac-
cording to his will. Honeypots are instead helpful in better
understanding and studying these dynamics.

Figure 5 shows contextual information for the two B-
clusters under consideration. The X axis splits the B-cluster
into the different M-clusters associated with it, while the
different graphs show, from top to bottom, the distribution
of the infected hosts over the IP space, the number of weeks
of activity of the different classes, and the timeline of activ-
ity.

In the first case, we see that the different malware vari-
ants are associated with different population sizes in terms
of infected hosts scanning the Internet. The different pop-
ulation sizes, combined with the small coverage of the
SGNET deployment in terms of the number of monitored
IPs (at the time of writing, 150 IPs are monitored by the
deployment in 30 different network locations), makes the
smaller groups account for only a few hits in the dataset.

2As of today, any resolution attempt for the above name fails, and the
name appears in many popular blacklists

Nevertheless, the distribution of the infected hosts over the
IP space, as shown in Figure 5, is very similar and gen-
erally widespread over most of the IP space. The specific
case taken into consideration is indeed a cluster composed
of multiple Allaple variants. Allaple is a self-propagating
worm exploiting the Microsoft ASN.1 vulnerability (MS04-
007) to propagate to its victims, infect HTML files present
on the local system and carry on simple DoS attacks against
specific targets. The analysis of the Allaple infection re-
vealed the existance of several modifications and improve-
ments to the original code [24], but due to the lack of a
Command & Control channel, the worm lacks self-updating
capability. Therefore, hosts infected by the different ver-
sions and patches of the original codebase coexist on the
Internet. While all these different modifications lead to the
generation of two different B-clusters, they generate almost
100 different static clusters. One of the main differentiation
factors among the different classes is the file size: while
the polymorphic routine used by Allaple modifies the bi-
nary content without modifying the size, we can detect in
the SGNET dataset a variety of M-clusters, all linked to
the same B-clusters, but characterized by different binary
sizes. In some cases, the different variants also have differ-
ent linker versions, suggesting recompilations with different
versions of the compiler.

Looking at the right side of Figure 5, we can immediately
identify important differences in the size of the infected
populations, and on their distribution over the IP space. In
this case, we face rather small populations in terms of num-
bers of attackers, with most of the static clusters associated
to very specific networks of the IP space. All the activi-
ties are bursty, and in some cases, the temporal evolution
exposes complex behaviors that we consider likely to be
associated to bot-like coordinated behavior. For instance,
looking in depth at the temporal evolution of one of the M-
clusters, we obtain the following sequence:

• 15/7 - 16/7: observed hitting network location A
• 18/7: observed hitting network location B
• 26/7: observed hitting network location B
• 2/8-4/8: observed hitting network location A
• 27/9: observed hitting network location B

Such coordinated behavior suggests the presence of a
Command&Control channel.

We have, therefore, looked closer into the behavioral
profiles for these samples, and have tried to gather evidence
of the presence of an IRC Command & Control server.
While not all the samples were executed by Anubis during
the activity period of the C&C server, we have been able
to associate some of the M-clusters taken into considera-
tion to the corresponding IRC server. Table 2 shows how, in
most cases, each M-cluster is characterized by connections
to a specific IRC server. In the minority of cases in which
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Figure 5. Propagation context information for two behavioral clusters.

distinct M-clusters operate on the same IRC channel and re-
ceive commands from the same room name, they are likely
to be associated to different code variants or “patches” ap-
plied to the very same botnet. But even when looking at
M-clusters operating on different IRC channels, the char-
acteristics of the IRC channels reveal very strong similari-
ties: many IRC servers are hosted in the same /24 subnet,
and send commands to the bots from rooms with recurring
names or name patterns. This suggests the operation of a
specific bot-herder or organization that is maintaining mul-
tiple separate botnets.

The combination of malware clustering techniques (i.e.,

Server address Room name M-clusters
67.43.226.242 #las6 282, 70
67.43.232.34 #kok8 263
67.43.232.35 #kok6 23, 277
67.43.232.36 #kham 170
67.43.232.36 #kok2 37
67.43.232.36 #kok6 195, 275
67.43.232.36 #ns 234
72.10.172.211 #las6 266
72.10.172.218 #siwa 140
83.68.16.6 #ns 112

Table 2. IRC servers associated to some of
the M-clusters

based on both static and dynamic features) with long term
contextual information on their evolution is helpful in prac-
tice. That is, such techniques allow us to understand better
how malware is developed and propagated. Our work shows
the importance of leveraging different information sources
for studying the threat evolution, and the “economy” of its
driving forces.

5. Conclusion

In this paper, we evaluate and combine different clus-
tering techniques in order to improve our effectiveness in
building intelligence on the threats economy.

We take advantage of a freely accessible honeypot
dataset, SGNET, and propose a pattern generation tech-
nique to explore the relationships between exploits, shell-
codes and malware classes while being resistant to the cur-
rent level of sophistication of polymorphic engines. Despite
the simplicity of the approach and the easiness with which
it could be evaded by malware writers, we show that the
current level of sophistication of polymorphic techniques
is very low and that simple clustering techniques based on
static features often work well in practice. Furthermore, we
show the importance of these techniques in detecting and
“healing” known problems in dynamic analysis, such as the
dependence of the execution behavior on external condi-
tions (e.g., such as the availability of a command and con-
trol server).



Moreover, we offer insights into the relationships be-
tween different malware classes, their propagation strate-
gies and their behavioral profiles. We show with practical
examples how different techniques offer different perspec-
tives over the ground truth. The propagation context allows
to build semantics on top of the malware clusters, provid-
ing information that is not easily available through standard
dynamic analysis techniques. We show how the propaga-
tion vector information can be used to study code-sharing
taking place among malware writers, and how temporal in-
formation and source distribution can be effectively used to
provide semantics on the threat behavior to the security an-
alyst.
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