Reverse Engineering of Network Signatures

Darren Mutz Christopher KruedelWilliam Robertson
Giovanni Vigna Richard A. Kemmerer
Reliable Software Group
University of California, Santa Barbara
Email: {dhm,chris,wkr,vigna,kemp@cs.ucsb.edu

Abstract

Network-based intrusion detection systems analyze néttraffic looking for evidence of attacks. The analysis
is usually performed usingignatures which are rules that describe what traffic should be comsitlas malicious.
If the signatures are known, it is possible to either crafatiack to avoid detection or to send synthetic traffic that
will match the signature to over-stimulate the network sertmausing a denial of service attack. To prevent these
attacks, commercial systems usually do not publish thginature sets and their analysis algorithms. This paper
describes a reverse engineering process and a reverseerggntool that are used to analyze the way signatures
are matched by network-based intrusion detection syst&hes.results of the analysis are used to either generate
variations of attacks that evade detection or produce nalicious traffic that over-stimulates the sensor. This
shows that security through obscurity does not work. Thakégping the signatures secret does not necessarily
increase the resistance of a system to evasion and ovarkation attacks.
Keywords: Evasion, Detection Signatures, Network-based IntrusieteEtion, Reverse Engineering

I. INTRODUCTION

Network-based intrusion detection systems (NIDSs) amalye contents of network traffic to find
evidence that malicious activity is occurring. The analyisiperformed using different techniques, which
can be classified into anomaly detection techniques andseaidatection techniques.

Anomaly detection techniques rely on models of expectedigibebehavior of both the applications
(e.g., in terms of the protocol being used) and the netwark (& terms of the type and amount of traffic
exchanged). These models may be generated manually, dlexitematically from application source
code, created as the results of protocol analysis, or cardradd by observing the network during a
training phase.

Misuse detection techniques take a complementary appatiely on models of malicious behavior
to identify instances of attacks in network traffic. Simitarthe previous set of techniques, the models
may be written manually, derived from specifications, orred from sample input.

The most common form of attack model is a manually writsegnature A signature is a set of rules
that, when applied to an input stream, will match every instaof the attack modeled by the signature.
Signatures can be applied to input events using differertimmay models (e.g., stateless or stateful
models) and can be expressed in different languages (egular expressions or predicates).

Although the use of signatures requires continuous upglaifrthe signature set and makes intrusion
detection systems somewhat ineffective against novetkstaall of the most popular NIDSs rely on
signatures. This is the case for both open-source systechsasuSnort [18], Bro [15], and NetSTAT [23]
as well as closed-source systems such as ISS’ RealSec(y&yblantec’s ManHunt [22], and NFR [17].

Knowing the set of signatures used by a network-based intrugetection system gives the attacker
two advantages: it allows the attacker (i) to devise waysvarle detection by crafting attacks in a way
that will not be matched by a signature and (ii) to performrestemulation attacks where synthetic traffic
is sent to the intrusion detection system to cause an exeeasiount of alerts. This effectively results
in a denial of service attack against the NIDS administratdro quickly becomes desensitized to alerts

IChristopher Kruegel is currently with the Technical Unaigr of Vienna.



issued by the system. In addition, because developingtsigggais a time-consuming, expertise-intensive
process, commercial systems often do not disclose themagiges to prevent competitors from copying
them.

Developers of closed-source systems often believe thatikgesignatures undisclosed is an effective
way to protect the system from evasion techniques, overuddition attacks, and intellectual property theft.
Unfortunately, this sense of security is unjustified. We ehaeveloped an approach to evade detection
that is based on information obtained from reverse engingarlosed-source signatures and detection
routines. The reverse engineering process involves tharmdynanalysis of the sensor binary when it is
stimulated with legitimate and malicious input. The analygsults are then used to guide the selection
of appropriate evasion techniques from a set of alternstive

Being able to generate instances of attacks that evadetidetby Snort is not very surprising, since the
Snort signatures are readily available. However, in thisepave demonstrate how by using information
gathered during the reverse engineering process we wese@lglenerate instances of attacks that evade
detection by ISS’ RealSecure. Although the results aretdéichio one commercial system, the comparison
with Snort shows that a closed-source approach does nadseadyg afford better protection against evasion
attacks. In addition, this methodology lays the foundafimnan approach that can leverage black-box
testing of network-based intrusion detection systems @sgkample, described in prior work by the
authors [14].

The remainder of this paper is structured as follows. Sectlopresents related work. Section Il
discusses our evasion technique and the reverse engigdenhthat we developed for this purpose.
Section IV presents the vulnerability and a corresponditigck that are used in our case study to
demonstrate how Snort (in Section V) and ISS’ RealSecur&éiction VI) can be successfully evaded.
Finally, Section VII draws conclusions and outlines futwerk.

Il. RELATED WORK

Evasion techniques have been studied since the very firetunttion of intrusion detection systems. In
the field of network-based intrusion detection, severditeqes have been proposed (see in particular the
work of Ptacek et al. [16]) and implemented [8], [21]. A moeeent effort has investigated the potential
for algorithmic denial of service of NIDSs [4]. Additiong/lwork has been done on hardening IDSs
against evasion attacks using traffic normalization [7] yrebminating network-level ambiguities [19].

The introduction and vast deployment of open-source NID&sst notably of Snort [18], also spawned
the creation of tools that leverage the signatures of a systedrive attacks against the detection process.
A class of these tools is represented by over-stimulatiotstsuch as Snot [20], Stick [6], IDSWakeup [2],
and Mucus [14], which was developed by the authors. The gimmfesignature-driven traffic generation
was extended with Mucus to perform black-box testing of @tbsource network-based intrusion detection
systems. One of the lessons learned in developing the teeag technique was that, due to intellectual
property concerns, NIDS developers are very secretivetabeur signatures, even when presented with
the possibility of getting useful feedback about the effestess of their detection capabilities [14]. As
a consequence, it is almost impossible to obtain signaeisefsom vendors. These vendors often claim
that by making the detection process closed-source, thgiicplar IDS is made more resilient to evasion
and over-stimulation attacks. This claim motivated our kvand is evaluated in the remainder of the
paper. Our findings show that closed-source signatures kyaditams provide only limited protection
against evasion or over-stimulation attacks and may peosgidalse sense of security. To the best of our
knowledge, a technique that uses the results of the revagiaering of closed-source NIDS signatures
to drive evasion attacks has never been proposed before.

IIl. EVASION AND OVER-STIMULATION

Intuitively, we define thattack spacdor an attack as the set of all event sequences (e.g., netvamds,
system call traces) that contain successful instancesiofattack. Thesignature spacef a signature is
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defined as the set of all event sequences that match (i.Bll, the constraints of) this signature. Evasion
and over-stimulation attacks are possible when the attpakesand the signature space for a particular
attack do not completely overlap (see Figure 1). Event setpeein the attack space that are not in the
signature space are called evasion attacks, while seqaémaeare in the signature space but not in the
attack space are called over-stimulation attacks.

Previous work has demonstrated that current IDS implenientaare open to a variety of evasion
attacks [16], [25]. These evasion attacks involve desymakimg the view of the IDS from the view of
the attacked service with respect to a stream of networktevBy doing this, a successful attack against
the service may appear benign to the IDS.

The quintessential example of a network-level IDS evassothé overlapping IP fragment attack [16].
This attack exploits an undefined area of the IP specificatitim regard to the reassembly of overlapping
IP fragments. Since the specification fails to mention wlietiewer or older overlapping data is to be used,
the network stacks for various operating systems behavereiittly, some preferring newer data, others
preferring older data. Historically, NIDS have followed angral policy of preferring either only newer
or only older data. Thus, if an attacker knows that a hostegtetl by a NIDS reassembles fragments
differently than the NIDS itself, then it is possible to hitlee signs of an attack from the NIDS by
fragmenting the IP packets carrying the attack in a way thakes the NIDS believe that the traffic is
benign.

A common example of a protocol-level IDS evasion is the usaltdrnate data encodings that are
correctly handled by an application but not parsed by an IBE For instance, the HTTP specifi-
cation defines a method for encoding characters as part of la Wtch are excluded from the set
[ 0-9a-zA-Z$- .. +1 *’ (), ] by replacing these characters with a “%” character follovegda two-
digit hexadecimal representation of the characters’ I13@A.code. HTTP servers are expected to correctly
decode URL-encoded strings as necessary. However, theeebe@n many instances of IDS implemen-
tations that neglected to account for URL-encoded strifipss allowed attackers to evade detection by
encoding the attack in a way that prevents the NIDS from ssfaly matching the malicious URL.

A. Evasion Technique

The task of evading detection by a misuse-based NIDS is Ipessis described above, whenever there
exists some sequence of events that is both (a) a member sdtloé sequences that constitute a successful
attack on a target system and (b) falls outside the set oftesagquences matched by the signatures in
the NIDS. When using a black-box approach (without infoioragbout the detection process or precise
details about the signatures), finding such a sequence igrative process with the following two steps.

1) Modification StepModify the attack using known evasion techniques [24].

2) Verification StepTest the attack on the target system, verifying that the fremtlexploit successfully compromises the
target. Then, check which alerts were generated by thesioimudetection system. When no alerts were generated, the
evasion attempt was successful, otherwise the procespésiterl from Step 1.

The major shortcoming of this approach is that it can be viemg tonsuming, especially when both the

code modification step and the verification step have to bmeed manually. Also, without knowledge



of the inner workings of the detection process and the sigaatused by the system, it is not clear which
changes to the attack are most promising. Additionallynewéen both steps (exploit modification and
verification) can be automated, it is still possible that¢bde modification rules are not powerful enough
to express an evasion opportunity that is specific enougla foarticular system or signature.

When the source code and signatures for a NIDS are availblgever, a better approach is to
try to understand the detection mechanism of the system d@etify potential problems in the input
parsing routines or in the attack signatures. In misuseh#3Ss, signatures are typically encoded as a
conjunction of constraints on values contained in one oremigput events. In general, an alert is issued
by the system when all such constraints are satisfied. Tlough& purposes of evading an attack, only
one such constraint needs to be unsatisfied in order for teet®wassociated with the evasion attempt
to go undetected. Explicit knowledge of these constraistal@#ishes the power of the modification rules
being applied with respect to the set of constraints impdsethe target NIDS. This often permits the
attacker to determine whether the modification ruleset vgguful enough to perform the desired evasion.
In addition, knowledge of signature constraints can be tgeltive the modification in the direction most
likely to result in a successful evasion. With this in mindefs2 in the two step process from above is
replaced with Step 2’, which includes an analysis sub-step:

2) \Verification and Analysis Stef¥est the attack on the target system, verifying that the fremtliexploit successfully
compromises the target. Then, check which alerts were g@teby the intrusion detection system. When no alerts
were generated, the evasion attempt was succetfsful.alert is generated, determine the root cause(s) of #teation.
Return to Step 1, applying the findings of Step 2’

Analysis of open source NIDS signatures, such as those in’Ss@nature set, reveals that signatures
often exhibit weaknesses: they are designed to match omanant of a particular attack, or they may
be written to detect circumstantial or collateral eviden€an attack, as opposed to direct evidence. For
example, a signature that looks for indirect evidence matyiggered when a packet is sent to a particular
port and the packet has a length greater than some value. & pnecise signature may additionally look
for shellcode in the packet’s payload, which more direatljicates an attack. In the case where a signature
is written to match a single instance of a vulnerability lge@xercised — for example, matching a specific
string of bytes in an attack’s shellcode — evasion is oftessiide by inserting an instruction that has no
effects, or by remapping the registers used by the shellcbdese observations suggest that signature
analysis can be a significant benefit to the evasion process.

When the source code of the NIDS and its signatures are bigilthe attacker is able to observe
the precise sequence of checks made by the system on inpuiis gu&or to issuing or not issuing an
alert. However, this is not possible in general for closedrse systems, since the sequence of checks is
not deducible from the textual descriptions of signatureg tommonly accompany commercial IDSs.
Furthermore, even in cases where signatures are availaipheecise definition of the semantics of the
signature language may lead to uncertainty with respect hatwhecks the implementation actually
performs on events in its input. The following section preg® a technique for signature analysis under
such circumstances.

B. Reverse Engineering

In order to be able to determine the reason why a particulent & generated by a closed-source
IDS, the binary has to be analyzed. This process, often ccadieerse engineerings defined as the
process of analyzing a system to identify the system’s corapts and their interrelationships and creating
representations of the system in another form or at a highasl lof abstraction. As such, the reverse
engineering process is always closely connected with apérakient on the system that is analyzed. It is
possible, however, to provide general guidelines and ttias support this process.

First, it is useful to have a mechanism that can quickly gatieevariations of input events (e.g., network
packets with different payloads), which is needed durirg rtiodification step. In our experiments with



network-based intrusion detection systems, we used twhgbuhvailable tools: hping [9] and an extended
version of our IDS testing tool, Mucus [14].

During the analysis step, it is helpful to have (i) a statisadsembly of the binary available, and (ii) a
dynamic trace of each instruction that is executed by theisiin detection sensor when an input event
is received.

For our experiments, the dynamic traces were gathered tisgpracesystem call interface. The ptrace
system call provides a means by which a process can obseaiveoatrol the execution of another process
and examine and change its process image and registers. fQhe ptrace options allows the tracing
process to single-step the traced process. That is, aftériestruction is executed by the traced process,
control is transferred back to the tracing process, whig¢hes able to inspect register and memory values.
This allows one to record and analyze each executed ingtrnuatong with its operands.

The ptrace interface is usually used to implement debug@persh asgdb) or system call tracing.
For our experiments, we implemented an instruction tratoad, calleditrace, to gather dynamic traces.
Itrace uses the single-step functionality of ptrace to etesingle instructions of the process that is under
analysis. After each step, the instruction that has beeoutsé is parsed and disassembled. Additionally,
an analysis of the instruction’s operands is performed. damh register operand, the current value of
the corresponding register is shown. For each memory acttessorresponding memory addresses are
calculated and the values at these addresses are extremtethe running process image. Because itrace
analyzes instructions and operands, we were required teemgnt a significant subset of the Intel i386
instruction set and the various addressing modes. This snatnivial task considering the fact that the
i386 instruction set contains a large number of variablgtlerCISC operations with addressing modes
that can take up to three register and immediate value coemen

Itrace also has the capability to identify function call aetlurn instructions. This information is used
to build a control flow graph of the application that grapHicahows the way functions call each other
at run-time. Having dynamic data from an actual program ettec available is particularly beneficial
when the code contains indirect function calls or indirechps. A control transfer instruction, such as a
call or a jump, is calledndirectif the target of this instruction is not determined by a canstaddress or
offset. Instead, the target is obtained from a register anorg address at run-time. Therefore, it is often
not possible to statically find the targets of indirect cohtransfer instructions and only an incomplete
call graph can be built. When using the data from a dynamicetr&owever, it is at least possible to
include a subset of the valid call targets (i.e., all targhts are called during the program’s execution)
in the control flow graph.

IV. CASE STuDY

The case study in this paper demonstrates our evasion teEhon both an open-source and a closed-
source NIDS, and makes use of a remotely exploitable vubildyain the Apache web server as a
pedagogical example. The vulnerability appears in ApacBetlirough 1.3.24 and Apache 2.0 through
2.0.36. It is caused by the way in which chunk-encoded HTRi@sts are handled.

HTTP chunk encoding is specified in the HTTP/1.1 protocol apecific form of transfer encoding
for HTTP requests and replies. In general, transfer engoglalues are used to indicate an encoding
transformation that has been applied to a message body &r twdensure safe or efficient transport
through the network. In particular, chunk encoding allowdiant or a server to divide the message into
multiple parts (i.e., chunks) and transmit them one aftatlagr. A common use for chunk encoding is
to stream data in consecutive chunks from a server to a client

When an HTTP request is chunk-encoded, the striciguihked” has to be specified in the transfer
encoding header field; then a sequence of chunks can be fitwtsnitach chunk consists of a length
field, which is a string that is interpreted as a hexadecirnailver, and a chunk data block. The length of
the data block is specified by the length field, and the endethunk sequence is indicated by an empty



(zero-sized) chunk. Both the chunk length field and the chdetia block are terminated by a carriage-
return (“\r ") character followed by a line-feed charactekn™). A simple example of a chunk-encoded
request is shown below.

Tr ansf er - Encodi ng: chunked

6\r\n \ first chunk
AAAAAA\ r\ n /

A\ r\n \  second chunk
BBBB\r\ n /

0 final chunk

Apache is vulnerable to an integer overflow when the size diunk exceeds OxTfffffff (which causes
the most significant bit to become 1). Vulnerable version\p&che treat the chunk size as a signed
32-bit integer and fail to include the proper size checksusTtan attacker can craft the request so that
the overflow is triggered, and arbitrary code (which can letuitked in other header fields of the HTTP
request) can be executed.

This particular vulnerability was selected for a number edsons. First, Apache is the most widely
deployed web server and thus a prominent target for attackevulnerability in a program with Apache’s
installation base raises a lot of interest both in the blaak-community and among security system
vendors. This has the important result that several exgptbdt can be readily used for our case study are
currently circulating on the Internet. In addition, thesg@leits cannot be ignored by intrusion detection
system vendors and maintainers, and it is in their inteegrovide “good” signatures for them.

Another reason for choosing the chunk encoding exploit & this a complex attack that exploits an
input validation error in Apache. The attacker has to firstrezt to the web server using a TCP three-way
handshake and then supply specially crafted input, inolyidhellcode, that triggers the vulnerability. This
gives the IDS multiple chances to detect the attack. Howedwebe able to write a good signature that
correctly models the vulnerability, the system is requitedorrectly reassemble the TCP stream, parse
the HTTP protocol, and detect the oversized chunk length.

The following two sections describe the steps that werentaevade detection by an open-source IDS
(Snort) and a closed-source IDS (ISS’ RealSecure) wheroiixug the Apache vulnerability described
above.

V. EVADING THE SNORT NIDS

The Snort 2.1.1 ruleset contains two signatures for detgdtie Apache chunk overflow attack. The
first signature looks for traffic directed to a web server tt@ttains a binary sequence known to appear
in the shellcode of a known chunked encoding exploit:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg: "WEB- M SC apache chunked encodi ng nmenory corruption exploit
attenpt"; flow established,to_server;
content:"|CO 50 52 89 E1 50 51 52 50 B8 3B 00 00 00 CD 80| ";
ref erence: bugtraq, 5033; reference: cve, CAN- 2002- 0392;
cl asstype: web-application-activity; sid:1808; rev:3;)

This signature is readily recognizable as being weak in #resa that it matches a particulattack as
opposed to detecting a general class of activity relatethéaainerability.

The second signature matches packets destined for a webér sghose payloads contain padding
characters that are known to occur in packets generated dipemknown exploit of this vulnerability:



alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS
(msg: "WEB- M SC Apache Chunked- Encodi ng worm attenpt”;
flow to_server, established;
cont ent : " CCCCCCC\ : AAAAAAAAAAAAAAAAAAA"; nocase;
cl asstype: web-application-attack; reference: bugtraq, 4474;
ref erence: cve, CAN- 2002- 0079; r ef er ence: bugt r aq, 5033;
reference: cve, CAN- 2002- 0392; sid: 1809; rev: 2;)

Again, it can be seen that the content being matched is nettdavidence of a vulnerability being
exploited, but rather a string that is associated with a kn@single) instance of an attack that exploits
the vulnerability. As we will see, this specificity can be bifed to evade detection.

As mentioned above, two exploits for the Apache chunked @&ingovulnerability were readily available
from sources on the Internet. The first exploit consideredie reverse engineering effort uses shellcode
that contains precisely the binary sequence specified ifirtesignature, so it was discarded in favor of
the second exploit.

Having chosen the exploit, the evasion effort focused omeefient of the exploit with respect to the
second signature. Recall that this signature triggers gtopds containing a fixed string. In order to
evade detection, the string produced by the attack was raddifo that one space instead of two spaces
occurred after the colon (i.e.CCCCCCC\: | AAA...” was replaced with CCCCCCC\: | /AAA..."). The
attack still succeeds since this modification has no effachav Apache interprets the string. However,
the signature does not fire on the modified string.

Surprisingly, this testing revealed an additional alestrone of Snort’s preprocessors
(ht t p_i nspect server):

[**] [119:16:1] (http_i nspect) OVERSI ZE CHUNK ENCODI NG [ **]

This unexpected alert had to be evaded as well in order foethsion attack to be considered successful.

Examining the exploit code in conjunction with tHe t p_i nspect _server preprocessor code
revealed the cause of the alert. Since the chunked encogplgiterelies on overflowing a signed integer
representing the chunk length, the length appears as a ag unsigned integedxffff ff 6e). The
htt p_i nspect _server preprocessor can be parameterized with a maximum chunkdemgrohat
defaults to 500000, far below the value for the chunk lengtijuired for the exploit to be successful.

With this knowledge, an attack on Snort’s parser was devidpdn inspecting the preprocessor’s routine
for parsing the chunk length, we noted that the code assuméanteger encoding is immediately followed
by a carriage-return/line-feed sequencer ({n”). Violating this assumption results in a variable being se
to 0, which prevents the accumulated value of the chunk lengtih foeing compared against the limit. The
attack was therefore modified to send a length sequenceiciigta tab characterf‘f f f f f 6e\t \r \n”,
and the padding string generated by the exploit was reduged single character to account for the
modification. The modified attack was tested successfullgirey Apache, and no Snort alerts were
produced.

VI. EVADING THE REALSECURENIDS

RealSecure, which is developed by Internet Security Syst@85), was chosen as the closed-source
system for our evaluation because, as of the time of writingg commonly considered to be the most
widely deployed commercial intrusion detection systemadidition, ISS established X-Force, a respected
security team that performs in-depth security researatiuding penetration testing on common server
applications and systems. Their real-world expertise agmeéd to be a driving influence on the security
of ISS’ products and services.

First, we downloaded the evaluation version of the Real®@enatwork sensor from ISS’ web site. The
sensor is Version 7.0 (the latest available at the time okaperiments), and it is shipped as several binary



packages for RedHat Linux 7.3. In addition to the sensor,séocn Linux 2.4.18 kernel is provided, which
replaces the standard kernel of the RedHat 7.3 installafienalso downloaded SiteProtector for Windows
2000, a centralized management console that remotelyatsRealSecure sensors and provides a central
point to collect and display alerts. The Windows 2000 hoethimg SiteProtector and the RedHat 7.3 host
running the RealSecure sensor were both deployed on the maate network that was previously used
to analyze Snort.

Before the reverse engineering effort was undertaken, weeddo extract the bulk of RealSecure’s
signatures. We assumed that there was a signature file, whicladed when the sensor is started, and
that it would only be necessary to determine the signatunedb At the very least, we expected that
there would be data structures in the memory image of theimgrsensor process that could be mapped
to simple checks (e.g., such as checking the destinationipa TCP packet against the value of the
HTTP port). This would then allow us to reconstruct most aigres.

Unfortunately, these assumptions turned out to be wron@l3Reure uses a shared library (called
i ss- paml. so), which is dynamically loaded when the sensor process isclaed. This library encodes
the signatures and their corresponding checks directlyxasutable code. To be more precise, there is
no location in the executable file or in memory that containsaeametric description of which checks
have to be performed by a general purpose detection rodtiseead, the library code contains explicit
machine code instructions for each check that needs to llerped on behalf of every signature. These
instructions mostly operate with immediate values (i.ardhcoded values that are part of the instruction)
that are compared against values in the input data. This sntie automatic extraction of signatures
comparable to the difficulty of the program understandingpfgm. However, it is feasible to analyze the
program trace for a single attack and determine the inputgeing and the checks that are performed
before a particular alarm is raised.

Fortunately, there was no obvious attempt to obfuscate ithrary code or to harden the binary
against reverse engineering. Even though the signatwayilis stripped (i.e., symbol information used
for debugging and relocation information used for linking aemoved) it can be easily disassembled.
Additionally, when printing strings of three or more congtée printable characters in the library file
(using thest r i ngs utility) many content strings that were likely to be part d¢fagk signatures can be
seen. Also, ISS ships RealSecure with a list that contaiol smnature’s name, identification number,
and a brief description of its purpose.

The idea for the analysis was to us@ceto record a dynamic trace of each instruction that was erecut
by the sensor beginning from the point in time when a packattaining the malicious payload, was
received to the instant in which the attack was actually deteby the sensor. To constrain the program
trace to contain only relevant code that is executed whentidata is matched against signatures, we
attacheditrace to the sensor process after all startup routines had finiah€edthe sensor had entered a
polling loop to wait for a network packet to arrive.

We decided to start as simply as possible, by sending a sirgyie-length UDP packet with a destination
port of 161 to the RealSecure sensor. According to the gigedist, such packets are considered to be
SNMP probes that raise a single alert. No other packets wansrhitted over the network while the trace
was in progress. However, even for one UDP packet, the negutace contained several million lines. At
this point, we observed that whenever a signature is treggean immediate value that is equivalent to this
signature’s identifier (according to RealSecure’s sigmatist) is pushed on the stack. This observation
allowed us to locate the point in the trace where a signatudeiected and allowed us to focus on the
code region that is executed immediately before, in therapion that the relevant checks happen there.

This assumption proved to be correct, and for the UDP packatte port 161 a series of instructions
that compare the packet destination to immediate valuesrahipent destination ports (e.g., HTTP,
SMTP, or TELNET ports) was executed before the signaturetifier for the SNMP attack was pushed.
By following the path in the library code for other destimatiports, signatures for attacks against the



corresponding services were located.

Before starting with the more complex Apache chunk encoditack, which involves multiple packets,
a simpler UDP-based NTP (network time protocol) daemon floxerattack was analyzed. A signature
for this attack is included in the RealSecure ruleset andadilyeavailable exploit from the Internet was
correctly identified. Upon analysis of the library code ahé traces, it turned out that ISS’ signature
is triggered by all UDP packets that are sent to the NTP podt that exceed a certain length. That
is, no analysis of the protocol or the payload takes placés fihding was easily verified by crafting a
zero-filled packet of the appropriate length and observinag RealSecure generated an alert in response.
Thus, the NTP daemon buffer overflow signature is a typicaingde of an inaccurate signature that is
vulnerable to over-stimulation. Because the packet payéral protocol details are ignored, it is easy for
an attacker to trigger this alert at will and over-stimultte system.

After our experience with the two previous test cases, thacAp exploit was analyzed. As an initial
step, we executed the unmodified exploit against the victst nunning Apache. RealSecure reported
the following three alerts:

1) HTTP.ApacheChunkedBO: This signature checks for an HTTP packet containing thiegs “Transfer-Encoding:
chunked” and evaluates each chunk to see if its specifiedisigeeater than a certain Ma@hunkSize.

2) HTTP_Field With_Binary: This signature detects HTTP requests for fields Wwittary (non-ASCIl) data.

3) HTTP_FieldsWith_Binary: This signature detects HTTP requests for three aerfields of any size that contain binary
(non-ASCII) data.

The alerts show that the system correctly detected thekattad, in addition, reported two additional
warnings that refer to the shellcode that is included in ntbes twenty additional HTTP header fields.
When the modified exploit that evaded detection by Snort wasdhed, RealSecure still reported all three
alerts. This provides at least some evidence that ISS daesimply adopt the publicly available Snort
rule for the Apache attack.

The HTTRField With_Binary alert is triggered because the shellcode and retiaireases of the exploit
are encapsulated in header lines and contain many non-A@@tacters. When analyzing the trace for
this alert, we noticed an additional check that is perforrmedhe length of the header line. It turned out
that the alert is only raised when binary data is pres@at the number of characters in the header line
exceeds a threshold of 100. While this additional test wabadnly introduced to reduce false positives,
it provides an easy way to evade detection by keeping thdaHesfgghe exploit code below this threshold.
An alternative avenue of evasion would be to encode instmgtor replace them with other semantically
equivalent ones such that only ASCII characters are usedrjlthis experiment, the simpler approach
was chosen and the shellcode was shortened appropriategn e knowledge of the detection process
and the additional length check, it was straightforward pplya a successful evasion technique for this
alert.

The HTTPFieldsWith_Binary alert is raised because the exploit uses more tharhgaaoler fields to
store the exploit data. For this alert, the signature desori, which states that three or more fields have
to contain binary data to trigger the alarm, is sufficientltova successful evasion by reducing the number
of header lines with binary data to two.

The last alert, HTTPApacheChunkedBO, is directly related to the attack. When we reverse ereget:
the code that triggered this signature, we found that thdSeeare sensor parsed the HTTP request and
extracted the chunk size values from the request. This chinekis then checked to ensure that it is small
enough to not cause an overflow. The signature is highertgualan the comparable Snort rules that
check for particular string values that appear in payloddside-spread exploits but that are unrelated to
the actual vulnerability This signature also highlights the importance of reversgneering the intrusion

*However, recall that Snort’s httinspectserver preprocessor extracts the chunk size values frometheest and compares them against
a pre-set limit.



! (CR | LF) : append character to string

counter > 0 : decrement counter

counter==0

Fig. 2. Simple parsing state machine reverse engineered RealSecure.

detection sensor. A black-box approach could have investgdficant effort in modifying and disguising
the shellcode of the attack, thus focusing on an area thattishrecked by the signature.

Given the quality of the signature, which relies on protdambwledge to accurately model the vulner-
ability, our focus shifted to techniques to desynchronimetiew of Apache and RealSecure with respect
to the HTTP request. This requires an understanding of th&ngaroutines that are used by RealSecure
to extract the chunk sizes from the HTTP request. The arsabfgihe traces and the corresponding library
code revealed that a simple state machine (shown in Figuie Jed.

This state machine correctly implements the HTTP spedifioaor chunk-encoded requests. In state
So, the characters of the chunk size field are read. Becausez@diald is expected to be terminated
by both a carriage-return (CR) and a line-feed (LF) charathere are two transitions from statg to
stateS; and from state5; to stateS,. These transitions are actually taken for both CR and LFaddtars.
When stateS, is reached, the size field string is converted into the cpmeding number and a counter
is initialized. This counter is decremented for every chamathat is subsequently read in st&tg thus
discarding the following chunk data. When the counter reacrero, the transition back to stafg is
taken and the next chunk is processed.

Apache, however, is more lenient in accepting input thasdo® completely adhere to the standards.
This is necessary for a web server program that has to dedal pgtuliarities and implementation
differences of a large variety of web clients. In particulapache accepts chunk size fields that are
terminated with a single line-feed character, omitting teguired carriage-return.

This difference in input handling was exploited to launchuacgssful evasion attack. Consider the
following request:

5\n [l first chunk | ength
XXXXX\ n /1 chunk data (5 characters)
ffffffée\r\n /'l second chunk I ength (overfl ow)

By omitting the carriage-return character after the chuak $ield, RealSecure’s parsing routine was
forced to remain in staté;, waiting for a second end-of-line character, while readihgracters from
the chunk data. Because RealSecure’s implementors didxpeteto receive input characters other than
carriage-return or line-feed in statg, the input is silently dropped. When the second line-feeatatter
is encountered at the end of the chunk data, only the strihgs“passed to the number conversion routine
and the counter is set to five. Thus, the next five charactdiff”{" of the second chunk length in the
third line are interpreted as chunk data and discarded te §ta Then, the state machine returns to the
initial state S,. The remaining characters of the second length field (“f@ée® interpreted as the length
of the following chunk, passing the check for overflowingued. Apache, however, interprets the request
as if all lines were correctly terminated with both carriagurn and line-feed characters. Therefore, an
attacker can successfully exploit the vulnerability in Apa and evade detection by RealSecure.

For the previous two case studies as well as the Apache expleiuse of itrace was essential in quickly
identifying the sections of code responsible for RealS&suwattack detection. First, the automated nature
of the execution trace generation allowed analysis of tltedo be performed in a time-efficient manner
with various stimulations at a great level of detail. To thestoof our knowledge, no other tool available



today has this capability. Additionally, by correlatingcbaun with the changes in the input event stream,
itrace enabled us to quickly pinpoint the location and ratof the tests that RealSecure performed on
the input data. This ability made it relatively simple to emarate most or all of the checks performed
on input data for a given attack, iteratively revealing tregune of a given signature in a short period
of time. Having successfully reverse engineered Real®&&cdetection algorithms, it was then trivial to
deduce methods of evading the system.

VII. CONCLUSIONS ANDFUTURE WORK

We developed a technique to reverse engineer closed-ssigraures using correlated analysis between
an IDS stimulator and an execution tracer. The results ofr¢lrerse engineering process are used as a
basis to select and configure evasion mechanisms that aablsuor a specific attack or a specific system.
The experiments show that by leveraging the results of théyais it is possible to build modified versions
of attacks that will evade detection by a closed-source,nsernial tool.

Our reverse engineering approach supports a better uaddisy of how the match for a signature is
performed and what the reasons for a missed detection aeeefbine, by using this approach it is possible
to perform more focused and precise testing of closed-sosystems.

Future work will focus on creating a more general methodgpltwat will allow one to derive over-
stimulation or denial of service attacks in addition to ésasattacks. Preliminary analysis indicates that
by using dynamic analysis, it is possible to correlate thewmh of resources used by a network sensor
to the traffic generated by an IDS stimulator. Using this linfation, it may be possible to devise attacks
that would force a sensor to use a large amount of resources.

Section VI identified the potential problem that binary atgbathmic obfuscation of binary signatures
poses for our approach. Previous work has explored theetelptoblems of obfuscation ( [13]) and
deobfuscation ( [3], [11], [12]). Future work will examinleg extent to which signature obfuscation arises
in commercial sensors and explore effective means for eitiga semantic meaning to assist reverse
engineering in the face of obfuscation.

Finally, we plan to automate the comparison of trace setergéed by itrace in order to automatically
derive the tests performed by a closed-source sensor. Byasing the IDS stimulation device with
itrace in a framework that allows feedback from itrace toselihe stimulation process, we believe that
the process of reverse engineering closed-source sigsatan be performed almost completely without
user intervention.
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