
Speculator: A Tool to Analyze Speculative
Execution Attacks and Mitigations

Andrea Mambretti
Northeastern University

Boston, USA
mbr@ccs.neu.edu

Matthias Neugschwandtner
IBM Research - Zurich

Rueschlikon, Switzerland
mneug@iseclab.org

Alessandro Sorniotti
IBM Research - Zurich

Rueschlikon, Switzerland
aso@zurich.ibm.com

Engin Kirda
Northeastern University

Boston, USA
ek@ccs.neu.edu

William Robertson
Northeastern University

Boston, USA
wkr@ccs.neu.edu

Anil Kurmus
IBM Research - Zurich

Rueschlikon, Switzerland
kur@zurich.ibm.com

ABSTRACT

Speculative execution attacks exploit vulnerabilities at a CPU’s
microarchitectural level, which, until recently, remained hidden
below the instruction set architecture, largely undocumented by
CPU vendors. New speculative execution attacks are released on
a monthly basis, showing how aspects of the so-far unexplored
microarchitectural attack surface can be exploited. In this paper,
we introduce, Speculator, a new tool to investigate these new
microarchitectural attacks and their mitigations, which aims to
be the GDB of speculative execution. Using speculative execution
markers, set of instructions that we found are observable through
performance counters during CPU speculation, Speculator can
study microarchitectural behavior of single snippets of code, or
more complex attacker and victim scenarios (e.g. Branch Target
Injection (BTI) attacks). We also present our findings on multiple
CPU platforms showing the precision and the flexibility offered by
Speculator and its templates.

CCS CONCEPTS

• Security and privacy → Security in hardware; Side-channel
analysis and countermeasures; Hardware reverse engineering.

KEYWORDS

hardware reverse engineering, hardware side-channels, hardware
security

1 INTRODUCTION

A developer’s view of the CPU when writing a low-level program is
defined by the CPU’s instruction set architecture (ISA). The ISA is
a well-defined, stable interface the developer can use to access and
change the architectural state of a CPU. The software is in full con-
trol over memory, registers, interrupts and I/O. At the same time,
the CPU has a lower-level state of its own – the extra-architectural
state of the microarchitecture, commonly referred to as themicroar-
chitectural state. In general, the ISA provides no direct access to the
CPU microarchitecture, allowing the microarchitecture to evolve
independently while keeping the programming interface backward
compatible. The microarchitecture of a CPU is subject to frequent
changes between generations and models, and is different even
among vendors of a given ISA. A CPU’s microarchitecture typically
also implements security controls, such as process isolation.

Recent works [29, 33, 54] have shown how security controls can
be bypassed by submitting carefully-crafted inputs at the level of
the ISA interface. These attacks exploit undocumented behavior
at the microarchitectural level, and have been discovered through
reverse engineering and trial-and-error. The full breadth of this
class of attacks is not entirely understood, owing to the fact that
details about the microarchitectural level of modern commercial
CPUs are not publicly available. The research community cannot
provide complete answers to questions about the existence of new
attacks and the effectiveness of defenses.

More precisely, we identify two important related requirements:
(1) When developing new attacks, it is often required to analyze
and debug parts of the proof-of-concept code easily. For memory
corruption, this would be achieved with a debugger. An equivalent
for speculative execution attacks, that inspects microarchitectural
state directly, is needed. (2) When testing speculative execution mit-
igations, the current option is either to attempt a proof-of-concept
attack, or to trust the CPU flags and kernel configuration that are
provided. A more granular testing tool that directly inspects mi-
croarchitectural state would be beneficial to gain confidence in the
mitigations being properly implemented and enabled.

In this paper, we propose a tool, Speculator, with these two
requirements in mind. Speculator records or infers microarchi-
tectural behavior by using performance counters, supports incre-
mental analysis (evolution of microarchitectural state over a code
snippet), runs on both Intel and AMDCPUs, and enables concurrent
execution (interaction of two threads in an SMT environment).

Our paper makes the following contributions:
• A new performance-counter-based method and tool, Specu-
lator, to aid in designing attacks and mitigations.

• Insights into microarchitectural behavior relevant to attacks
and defenses: we successfully verify the return stack buffer
size, that nested speculative execution works, that specula-
tion does not span across system calls and that clflush has
no effect during speculation. We also measure the window
size for indirect branches, indirect control flow transfers and
store to load forwards. Finally, we document the effects of
page permissions, memory protection extension and special
instructions (e.g. lfence) on speculative execution.

• Examples of using Speculator against attacks and mitiga-
tions.

https://www.acsac.org/2019/

2 BACKGROUND

Speculative execution attacks (SEAs) exploit a new class of vulner-
abilities, targeting a particular microarchitectural CPU design with
specially crafted software. These attacks leverage known attack
vectors such as side channels, but go much further by combining
them with vulnerabilities at the microarchitectural level. Numerous
variants of SEAs have been disclosed since the beginning of 2018.
In this section, we propose a general definition and analysis of
SEAs with the aim of clearly distinguishing SEA variants in order
to motivate and guide the analysis of new attacks and defenses in
this area.

Before delving into the dissection of SEAs, we need to distinguish
SEAs from the more general category of out-of-order execution
attacks. Spectre v1 and v2 [29, 54] are the first discovered SEAs, with
Spectre v1.1 [28], Spectre v4 [22], NetSpectre [42] and Netspectre-
AVX being follow-ups. In contrast, attacks such as Meltdown [33],
Spectre v3a [7], Foreshadow [47] and Foreshadow-NG [51] do not
rely on speculative execution behavior, and may be classified in the
more general category of out-of-order execution attacks.

2.1 Attack scenarios, Privilege boundaries

SEAs, much like side channel attacks, can be performed in a variety
of scenarios involving one victim and one attacker thread. The
notion of thread here is in the general, hardware-related sense (e.g.
VMM thread, guest thread, (un)-sandboxed thread, or user/kernel
thread). The notion of privilege level here is also in the general
sense: not necessarily CPU privilege level related. These attacker
and victim threads run with different privileges, with the attacker
thread typically running with a lower privilege. There can also
be scenarios where both threads are at the same privilege level,
but have access to different data. In all cases, however, a boundary
separating attacker and victim contexts resides between the two
threads.

2.2 SEA Phases

SEAs can be decomposed into the following five distinct phases:
➊ Prepare side channel: In this phase, the CPU performs opera-

tions that will increase the chances of the attack succeeding.
For instance, the attacker can prime caches to prepare for
a prime-and-probe [45] cache side channel measurement,
make sure important target data is flushed, or ensure that
the attacking thread and victim thread are co-located.

➋ Prepare speculative execution: In this phase, the CPU exe-
cutes code that will allow speculative execution to start. This
is code that is typically executed within the context of the
victim.

➌ Speculative execution start: In this phase, the CPU executes
an instruction whose outcome decides the next instruction
to be executed, such as a conditional branch instruction.
Between the time window where this instruction is issued
and when it is retired, modern CPUs guess the outcome of
the branch to avoid stalling the pipeline, and execute code
speculatively. This is known as speculative execution [31].

➍ Speculative execution, side channel send: In this phase, the
CPU executes (but does not retire) instructions that will
result in a micro-architectural state change.

➎ Side channel receive: In this phase, the CPU executes instruc-
tions that transform the micro-architectural state change
that occurred in the previous step into an architectural state
change.

2.3 Privilege boundaries and attack impact

The core element that turns speculative execution into an attack
is the breach of a privilege boundary that is established through
hardware isolation support by the CPU. These privilege boundaries
typically aim to provide confidentiality and integrity of the data
residing within the boundary (i.e. preventing data from being read
ormodified directly from outside the boundary). All accesses to such
data are mediated by code running within the privilege boundary,
and that code may only be invoked from a lower privilege through
well-defined entry points.

In the case of currently known SEAs, the attacker’s aim is limited
to breaching confidentiality of data residing beyond the privilege
boundary by either accessing arbitrary data or leaking specific
metadata, such as pointer values, of the running program. For
instance, privilege boundaries that can be bypassed by some known
SEAs are:

• kernel vs. user-mode code
• hardware enclave (SGX) vs. user-mode or kernel-mode code
• sandboxed code in the same process, for example JavaScript
JIT code

• processes-to-process boundary
• remote node to local node boundary

We note that code at each SEA phase previously described can
potentially be run either in the higher privileged mode (victim-
provided code) or lower privileged one (attacker-provided code).

3 SPECULATOR

Speculative execution is not well-documented compared to other
features of modern CPUs. Being part of the microarchitecture, its
implementation details are hidden behind the ISA and subject to
optimization, which manufacturers keep to themselves.

However, understanding the internals of speculative execution
is key to comprehending the limits of Speculative Execution At-
tacks (SEAs), and to designing adequate mitigations and defenses
against SEAs. For this reason, we have designed and implemented
Speculator, a tool whose purpose is to reverse-engineer the behav-
ior of different CPUs in order to build a deeper understanding of
speculative execution. Speculator aggregates the relevant sources
of information available to an observer of speculative execution,
chief among them CPU performance counters and model-specific
registers, so that the behavior of different code snippets can be
observed from a speculative execution standpoint. In this section,
we describe the design and implementation of Speculator.

3.1 Performance Monitor Capabilities

Modern CPUs provide relevant information through the perfor-
mance counter interface. This interface is offered by most manu-
facturers, and it exposes a set of registers (some fixed and some
programmable) that can be used to retrieve information on vari-
ous aspects of the execution. Through these registers, counters for
events or duration related to microarchitectural state changes such

2

as cache accesses, retired instructions, and mispredicted branches,
are made available to the developer. Events are manufacturer- and
architecture-specific. This interface was originally made available
to provide a method for developers to improve the performance
of their code. The interface is typically used as follows: through a
setup step, developers can choose which events will be measured
by programmable counters out of a wide set of supported ones.
Measurements can be started and stopped programmatically in
order to carefully control the events of which precise sequence
of instructions is being measured. Setting up, starting, and stop-
ping measurements often requires supervisor mode (ring 0 in x86
nomenclature) instructions, whereas accessing counters is usually
available in user mode.

Speculator builds on top of performance counters to observe
the nature and effects of speculative execution. One challenge with
this approach is that the performance counters interface was not
designedwith this objective inmind. One of the contributions of this
paper is the identification of effective ways of using the interface,
and a useful set of counters to accurately infer the behavior of
speculative execution.

3.2 Objectives

Themain objective of Speculator is to accurately measure microar-
chitectural state attributes associated to the speculative portion of
the execution of user-supplied snippets of code. Accuracy refers to
the degree with which the tool is capable of isolating the changes to
the microarchitectural state caused by the snippet being analyzed
from that of the tool itself and the rest of the system (e.g. the OS or
other processes). An incomplete list of Speculator observables are
(1) which parts of the snippet are speculatively executed, (2) what
causes speculative execution to start and stop, (3) what parameters
affect the amount of speculative execution, (4) how do specific in-
structions affect the behavior of speculative execution, (5) which
security boundaries are effective in the prevention of speculative
execution, and (6) how consistently CPUs behave within the same
architecture and across architectures and vendors. The creation of
a new tool is justified because none of the existing ones, such as
perf_events [14] or Likwid [41], provide the required information
with sufficient accuracy.

More precisely, perf_events has two modes of operations, sam-
pling and counting. During sampling, there is no way to have pre-
cise quantitative information about code execution, and therefore
it is not suitable for our purpose. When evaluating perf_events’
counting mode, we experienced for very small snippets a certain
level of overhead (in the order of 500 µops). This overhead was
caused by the perf_event design decision of integrating all its oper-
ations (e.g. start counters, stop counters) in the kernel. Since the
test snippets are 20-30 instructions long on average, this overhead
completely prevents inferring any kind of relevant behavior.

Likwid operates instead in user space just as Speculator, instru-
menting the counters through the MSR register. However, its design
only allows system-wide measurements and does not provide the
same flexibility of handling the counter as the snippet progresses
in its execution.

We also considered other tools and libraries such as Oprofile [32],
Perfmon2 [16], Perfctl [39], and PAPI [43]. Unfortunately, all of

these possess either the same issues of measure inaccuracy or lack
of flexibility, or otherwise are outdated and unmaintained. Perfor-
mance comparisons among some of these interfaces are provided
by Zaparanuks et al. [53] and Weaver [50].

Another Speculator objective is to provide tooling for the gen-
eration and manipulation of code snippets. The ability to inspect
individual snippets and snippet groups during speculative execu-
tion allows the user to focus on combinations of instructions that
are relevant for specific use-cases. Additionally, support for mul-
tiple platforms enables the inference of generalizable facts about
speculative execution.

3.3 Design and Implementation

Figure 1 describes the architecture of Speculator and its three
main components: a pre-processing unit, a runtime unit called the
Monitor, and a post-processing unit.

The task of the pre-processing unit is to compile the provided
input into the appropriate execution format, and to introduce the
instrumentation required by the performance monitor interface to
be able to observe the value of the selected set of hardware coun-
ters. Input can be provided as a snippet of C or assembly code, or
as a template for the generation of code snippets. Code snippets
are generated from templates in an incremental fashion, resulting
in the output of multiple snippets with an increasing number of
instructions taken from a pre-compiled JSON list. Each instruction
is inserted by the Speculator snippet generator in the specific
location defined in the source template (Step 1 in Figure 1). The
introduction of such “incremental” snippets is justified by the fact
that the addition of a single assembly instruction may trigger opti-
mizations that – while preserving the expected program semantics
– alter the behavior of the CPU at a microarchitectural level and
affect the nature of speculative execution. Having incremental snip-
pets helps to verify when optimizations are triggered and take them
into account during the analysis of the results.

After the generation of the executable (also referred to as the
test application), the Speculator runtime is invoked on each of the
generated outputs (Step 3). To ensure that the Monitor does not per-
turb the measurements, the process executing the snippet and the
monitor are pinned on different cores. The Monitor is responsible
to configure the counters on the core used by the test application
(Step 2). As previously mentioned, there are many programmable
counters that can be used so we provide a configuration file that
can be loaded into Speculator to easily switch among them.

Once the Monitor has set up the environment, it loads and exe-
cutes the snippet in a separate process, and waits for it to complete
(Step 3). The test application prologue and epilogue will interact
with the environment created by the Monitor, resetting, starting
and stopping the counters as needed. The counters related to the
core where the test application runs are stopped by the test applica-
tion just before termination. When the test application terminates,
the Monitor will be signaled by the Operating System. At this point,
the Monitor can retrieve the values of the counters from the core
where the test application runs (Step 4) and store them in a result
file (Step 5). The Monitor can be configured to run a specific test
N times. In this case, the result file will contain the values of each
run.

3

Snippet

Generation

PRE-PROCESSING RUNTIME POST-PROCESSING

Speculator

Monitor
CPU-N

PMC

Init

Test

Execution

PMC

Read

Aggregate

Results

CPU-O

1

2 3 4

5

6

Figure 1: The architecture of Speculator. A template with the speculative execution trigger and a list of instructions to be speculatively

executed are the input to the code generation. The code snippets are run repeatedly under supervision of the speculator monitor, which

captures the event specified in the configuration file. Finally, the measurements are post-processed to present a final report on speculative

execution behavior.

In some cases, it might be required to run two processes in
an attacker and victim scenario. In this case, Speculator is able
to run two tests in a co-located manner to analyze the effects of
a process influencing another, like in the case of Spectre v2 or
DoubleBTI [36]. Speculator collects different counters for the
attacker and the victim. Under this configuration, Speculator
performs no synchronization between the two processes.

Once the tests results are collected from the Monitor, they are
handed to the post-processing unit (Step 6). This unit aggregates
the results from multiple runs by computing statistics (e.g. mean
and standard deviation) and by removing clear outliers.

3.4 Triggering Speculative Execution

The Speculator user supplies as input a code snippet to determine
how the CPU behaves when speculative execution takes place. We
note that in the absence of branch misprediction, instructions that
are speculatively executed will eventually retire and there should be
no undesired microarchitectural side-effects. The more interesting
case for the Speculator user is a snippet containing a branch, or
other speculative execution trigger that the CPU does not predict
accurately, leading to the speculative execution of instructions that
will not retire. In this scenario, Speculator helps the user detect
which instructions the CPU executed and how they influenced the
microarchitectural state.

To automate the generation of test cases, Speculator provides
the user with a series of templates that can be used to reproduce
the various speculation triggers. For instance, Speculator contains
templates to study Branch Target Injection (BTI) cases including
attacker and victim, or branch-based templates to study particular
series of instructions, or templates that causes ret instructions to
be speculated like in the Return Stack Buffer case, and so on.

An example using a common branch as trigger is described in Fig-
ure 2. The template is used as follows: the user supplies a snippet,

expecting i) it to be speculatively executed, ii) that none of its in-
structions will retire, and iii) that Speculator will report counters
relating to its execution. To achieve this, the template prefixes the
snippet supplied by the user with a branch instruction. The tem-
plate begins with a setup step that trains the branch predictor not to
take that branch. After the branch predictor is trained, the program
state is set to require the branch to be taken to ensure that the
snippet will be speculatively executed and that none of its instruc-
tions will retire. The template then starts the performance counters
that were previously setup by the Monitor and executes the branch,
after which it stops performance counters. In order to prolong or
shorten the speculative execution of the user snippet, the condition
variable of the branch can be placed in registers or memory. On the
microarchitectural level, a variable placed in memory can also be
cached in one of the levels of the cache hierarchy.

start

counters
branch

snippet

stop

counters

setup

takennot taken

Figure 2: Flow chart of one of the experiment template used in Spec-

ulator. The setup code brings the branch predictor in a specific

state that will cause the later branch tomispredict and speculatively

execute the code snippet consisting of the instructions. The specu-

lative execution of the instructions is measured by the PMC infras-

tructure, which is triggered by the corresponding start/stop instruc-

tions indicated in the flow chart.

4

3.5 Speculative Execution Markers

In the context of Speculator, we are mostly interested in deter-
mining the behavior of the CPU when instructions that are specu-
latively executed do not retire. A first natural question is whether
non-retired instructions were speculatively executed at all and, if
so, how many of them. An accurate detection of these events is (per-
haps surprisingly) not trivial. Indeed, the CPU strives to undo most
observable architectural side-effects from non-retired speculatively
executed instructions. However, as we know from the Spectre and
Meltdown works [29, 33], not all side effects are undone. One pos-
sible approach to detect non-retired speculative execution would
be to rely on the side-channels exploited in these works. This ap-
proach has several shortcomings: it is noisy, i.e., it has a relatively
low single-run detection accuracy, it is costly to setup and read, and
it requires otherwise unnecessary changes to program observables.

A more effective approach is based on markers of speculative ex-
ecution, that is, special instructions or sequences thereof (which we
will refer to as markers) that are detectable by performance coun-
ters even when they do not retire. The approach requires appending
the marker to the snippet which is fed as input to Speculator, and
ensuring that there is no other occurrence of the marker in the
snippet. If Speculator detects the marker, the detection can be
used as proof that the CPU executed the snippet.

The choice of which markers to use is manufacturer- and arch-
itecture-specific, given that not all CPUs expose the same set of
counters. In general, the marker must cause a microarchitectural
event that is detectable by a performance counter irrespective of
its retired status. For example, counters that measure issued or
executed instructions of a specific type irrespective of their retired
status constitute a good marker. The selection of which counter to
use on a given architecture requires manual inspection of the CPU
architecture programmer’s manual. In what follows, we report our
findings on the available markers for Intel processors:

UOPS_EXECUTED.CORE/THREAD counts the number of µops executed
by the CPU. It can be used to report the exact number of µops that
were executed out of the user-supplied snippet by subtracting the
number of µops that retire in the template (the branch and the in-
strumentation to stop performance counters) from the output value
of the counter. This counter is subject to µ-fusion of instructions
and does not count instructions that do not require execution such
as NOP. An exception to that rule is FNOP, which is tracked by this
counter as well.

UOPS_ISSUED.SINGLE_MUL belongs to a group of counters triggered
only by a specific set of instructions. This counter is fired whenever
a single-precision floating-point instruction that operates on the
XMM register is issued. This means that such an operation can be
inserted at the end of the user-supplied snippet to verify whether
this counter is incremented or not. This counter has been dropped
by Intel on most recent CPUs (e.g. Skylake) and therefore its usage
is limited across platforms.

Similarly to UOPS_ISSUED.SINGLE_MUL, UOPS_ISSUED.SLOW_LEA is
triggered by only a specific set of instructions. It counts LEA in-
structions with three source operands (e.g. lea rax, [array+rax*2]

). Unfortunately, certain operations such as clflush are considered
by the CPU as SLOW_LEA operations, so extra care must be taken to

Architecture CPU Design

Intel Haswell i5-4300U tock
Intel Broadwell i5-5250U tick
Intel Skylake i7-6700K tock
Intel Kaby Lake i7-8650U optimization
Intel Coffee Lake i7-8559U optimization
AMD Zen Ryzen 1700

Table 1: The CPUs per architecture we use Speculator on. While

Haswell and Skylake are new designs – “tocks” in Intel nomencla-

ture – Broadwell is a “tick”, a die-shrink of Haswell. Kaby and Cof-

fee Lake are instead optimized versions of Skylake design within

the same die size

subtract any number of those present outside of the user-supplied
snippet.

LD_BLOCKS.STORE_FORWARD is incremented for each store forward
that result in a failure. An example of a sequence that triggers this
kind of situation is shown in Listing 1.
1 mov DWORD[array], eax
2 mov DWORD[array+4], edx
3 movq xmm0 , QWORD[array]

Listing 1: Failed store forward example

The following markers are available on the AMD Zen architec-
ture:

DIV_OP_COUNT, counting the number of executed div instructions.
NUMBER_ OF_ MOVE_ ELIMINATION_ AND_ SCALAR_ OP_OPTIMIZATION,

like LD_BLOCKS.STORE_FORWARD, does not track the execution of an
instruction, but rather the effect of a certain instruction sequence.
In this case, it tracks in how many cases move elimination was
successful.

4 USING SPECULATOR: DISSECTING THE

MICROARCHITECTURALWORLD

Using Speculator, we explore the microarchitectural behavior of
modern CPUs. Our goal is twofold: we aim to investigate several
speculative execution properties, as well as test new PoC attacks
and available mitigations in a deterministic manner using the spec-
ulative execution markers introduced in Section 3.5.

The results that we uncover are applicable to previously discov-
ered and new attacks, and are also of independent interest. Since
some of our findings are hardware-dependent, we also show the
differences based on the underlying CPU architecture (Table 1).

4.1 Return Stack Buffer Size

The first set of experiments measures the size of the Return Stack
Buffer (RSB). The RSB is an internal buffer used by the CPU to
predict where a ret instruction is returning to. Koruyeh et al [30]
and Maisuradze et al [35] show how this buffer can be misused to
perform speculative execution attacks. We start with the RSB since
information on its size is available and can be used to validate the
accuracy of Speculator.

To perform the measurement, we design a test template similar
to the one presented in [30]. The test performs a call to a victim
function. Whenever the CPU executes a call instruction, it pushes

5

the expected return address (the instruction after call) on the appli-
cation stack (architecturally) and in the RSB (microarchitecturally).
The victim’s code further changes its return address to an exit rou-
tine by manually overwriting the stack. This way, the code at the
original return address is only speculatively executed since at the
microarchitectural level, the first entry in the RSB is popped and
execution (speculatively) continues at that address. In order to be
able to detect whether speculative execution takes place, a marker
is inserted at this target.

Based on the described template, we generate a series of snippets
that, between the call and ret, have a call to a filler function that
contains an increasing number of nested calls. For each of the nested
calls, an entry is added to the RSB. When the nested call stack depth
is bigger than the RSB size, the RSB loses the oldest entries. In this
case, once the CPU speculates the last ret, it has nothing to pop
from the RSB because the previous nested call/ret consumed all the
available entries. In that case, we expect the CPU not to be able to
speculatively execute our marker.

We report in Figure 3 and Figure 4 our results for Intel Kaby Lake
and AMD Ryzen. For Intel Kaby Lake, we observe that the marker
is observable up to 14 nested calls. To count the slots available in
the RSB, we need to also consider the additional call to the filler

function that contains the nested calls. This results in a total of
16 entries in the RSB, which matches the value reported by Intel
for the Kaby Lake RSB size. Interestingly, after 15 nested calls the
number of mispredicted branches increases almost linearly, by one
for each nested call added. This indicates that a second predictor is
used as fallback once the RSB cannot provide any more values.

Figure 4 shows the results for AMD Ryzen. After 30 nested calls,
we observe the marker hit to transition between 1 and 0.25. As
before we need to account for the call to filler. The result for the
AMD Ryzen RSB size is 31. Our result differs from the nominal
value we expected from the manufacturer specification, which is 32.
With further research into the optimization manual [9], we found
that one entry is actually reserved for “pointer logic simplification”.
Therefore, the observed 31 entries is correct. On AMD, after the
Return Address Stack (RAS) (the RSB in AMD nomenclature) is
emptied, we still observe a correct prediction 25% of the time and
not 0 as seen for Intel. This implies that the second predictor used
can still predict correctly 25% of the time in this particular setup.

0 2 4 6 8 10 12 14 16 18 20 22

call stack depth

0
1
2
3
4
5
6
7

m
a
rk

e
r

h
it Failed store to load forward

Mispredicted Branches

Figure 3: Return Stack Buffer test on Kabylake.

4.2 Nesting Speculative Execution

An undocumented corner case that might affect the construction
of attacks is when speculative execution encounters conditional
branches in its path. The questions we try to answer with this

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

call stack depth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
a
rk

e
r

h
it

div operation count

Figure 4: Return Stack Buffer test on AMD Ryzen.

experiment are “How is the speculative execution window affected
by nested branches?”. And “What is the overall behavior of the CPU
when nested branches are speculated?”.

We use Speculator to evaluate the case of nested branches.
This experiment has multiple potential outcomes: given two nested
branches, an outer and an inner one, either i) the inner branch is
not speculatively executed until the branch condition on the outer
branch is resolved, or ii) speculative execution continues to the
inner branch and beyond. In the second case, we are interested in
the speculative execution behavior if the inner branch is resolved
while the result of the outer one is still pending.

We design our experimentwith three nested conditional branches,
outermost to innermost, with the branch conditions being inde-
pendent of one another. The conditions are set up with decreasing
complexity, such that the outermost will take longest to resolve.
We achieve this by involving an uncached value that is subject
to multiple expensive operations (divs) in the outermost branch
condition, a simple uncached value in the middle branch condition,
and a cached value in the innermost branch condition. As usual,
we train the branch predictor for all branches in the setup phase
such that it is going to mispredict all targets in the measurement
phase. To evaluate which code paths are (speculatively) executed,
we repeat the experiment multiple times with marker instructions
placed in the opposite branch target paths.

We performed this experiment on both Broadwell and Skylake,
yielding identical results: in both cases, nested speculative exe-
cution takes place, i.e. speculative execution continues along the
trained branch targets for all branches. Second, if a nested branch
condition is resolved before its parent branch and a misprediction
has occurred, speculative execution picks up the opposite branch
target. If a parent branch is resolved, all mispredicted code paths,
including nested speculative execution, is canceled.

4.3 Speculative execution across system calls

An interesting case to analyze for new attacks is how speculative ex-
ecution behaves in case the attack spans between multiple privilege
boundaries. The question we try to answer here is: “Does specula-
tive execution continue through instructions such as syscall and
vmall?”

We thus investigate whether speculative execution continues
across the context switch from user- to kernel mode. To this end
we design a simple test scenario, where the speculatively executed
snippet issues a system call. For the system call itself we picked
sys_getppid because of its low complexity – an execution only
amounts to 47 instructions. We use the counter for executed µops

6

and tune it to capture either just µops executed in user mode or
kernel mode.

We performed the experiment on the Broadwell and Skylake
microarchitectures with identical results:

• The number of µops executed in user mode corresponds to
the instructions before the system call and does not increase
with additional instructions added after the system call.

• The number of µops executed in kernel mode does not in-
crease compared to a baseline measurement taken without
speculative execution of the code snippet.

We conclude that a system call effectively stops speculative exe-
cution after the system call returns from kernel mode. We further
conclude that a speculative execution attack across the system call
boundary is not feasible on the tested Intel CPUs.

1 setup
2 .loop:
3 clflush[counter]
4 clflush[var]
5 lfence
6
7 mov eax , DWORD[var] ;cached version
8 lfence ;only
9
10 start_counter
11
12 cmp 12, DWORD[counter]
13 je .else
14
15 clflush[var]
16 lfence
17
18 .else:
19 mov eax , DWORD[var] ;final load
20 lfence
21
22 stop_counter
23
24 inc DWORD[counter]
25 cmp DWORD[counter], 13
26 jl loop

Listing 2: Clflush test snippet structure

4.4 Flushing the Cache

The x86 instruction set provides a convenient, dedicated instruction
to cause the CPU to flush the cache line indicated by a memory
address from all caches, clflush. It is very useful in settings where
an attacker can execute assembly instructions, as it allows easy
eviction of data from the cache.

We use Speculator to investigate how clflush behaves when
executed speculatively. To this end, we create a snippet that first
flushes the cache line corresponding to a value stored in memory
and then loads the value. This is shown at line 4 and line 19 respec-
tively in Listing 2. We perform two runs, one where the setup code
warms up the cache by loading the value from memory (line 7)
and one where the value is left uncached. In both tests, within
the speculated sequence, we place a clflush followed by an lfence

instruction to stop the speculation, making sure that the final load
is not executed during speculation as well (line 15). We measure
the execution cycles on both runs, which shows a difference of over
160 clock cycles between the two settings. This is a clear indication
that while clflush is speculatively executed, it does not affect the
cache until retired. Thus, during a speculative execution attack, the

attacker cannot extend the speculation window using providing in
its code a clflush on the speculation starter variable.

Another result we draw from this experiment is that, to make
sure clflush is effective, it needs to be combined with an instruction
that stops speculative execution, such as lfence.

4.5 Speculation window size

The speculation window size is determined by the clock cycles
that it takes until a speculation trigger is resolved. In this section,
we provide our measurements of the speculation window for the
different triggers used in the Spectre v1, v2, and v4 attacks. To
measure clock cycles we use the facilities provided by the PMC of
the respective platform: on Intel, a predefined counter tracks elapsed
clock cycles according to the same settings as the configurable
counters; on AMD, the APERF counter tracks elapsed clock cycles
in general.

The theoretical upper limit of instructions that can be executed
during speculative execution is given by the size of the reorder
buffer, which we evaluated in Section A.1. In practice, it is also lim-
ited by the execution ports and units available for executing those
transactions. Thus, we also investigate instruction sequences that
do not lead to a bottleneck on those resources during speculative
execution.

Conditional branches. Conditional branches are the specula-
tive execution triggers used in Spectre v1 to check for an out-of-
bounds access to an array. The speculation window size depends
on how fast the CPU determines that the actual branch target dif-
fers from the information provided by the branch target buffer. We
place the conditional value that determines the actual branch target
in different locations and involve it in additional computation to
investigate how this affects the size of the speculation window. As
a baseline, we measure how long the execution of the additional
instructions takes. We then measure how long the execution of the
instructions together with the conditional branch takes. The place-
ment of the variable and the additional instructions on it affect the
time it takes the conditional branch to retire. All measurements are
performed a thousand times. Note that controlling the performance
counters involves a system call. Since system calls stop speculation,
we can only measure how long the retirement of an instruction
sequence takes.

As described by Agner Fog in [17], the APERF interface offered
by AMD Ryzen for clock cycles requires careful handling due to
its scaling with the CPU frequency. Hence, since the measurement
technique differs between the two CPU vendors for this particular
test, results for Intel and AMD might not be directly comparable.
However, while the post-processing of this dataset is different, the
test methodology used to gather it is the same.

Table 2 shows the results of this experiment. We see that complex
instructions such as div, which translates to multiple µops, widen
the speculation window. The same is true for a cache miss, when
the CPU needs to fetch the data from main memory.

At the same time, access to cached memory contributes little to
the speculation window compared to a register access. Measuring a
range from four to twelve cycles, the results for Broadwell and Sky-
lake are in accordance with Intel’s performance analysis guide [1]

7

which states four cycles as the average for an access to L1 and ten
cycles for L2.

On AMD, we see even less impact between register and cached
accesses. In addition, adding a complex instruction on top of an
access has a negligible effect on the speculation window size.

Conditional branch Broadwell Skylake Zen

Register access 14 16 7
Access to cached memory 19 17 9
Access to uncached memory 144 280 321
Mul with register 19 19 2
Mul with cached memory 33 33 8
Mul with uncached memory 154 290 362
Div with register 35 41 17
Div with cached memory 34 39 30
Div with uncached memory 164 306 353

Table 2: Speculation window of a conditional branch depending on

the type of instructions needed to resolve the branch as well as the

placement of the value involved in the condition, measured in cy-

cles.

Indirect control flow transfer. Indirect control flow transfers
are the speculative execution triggers used in Spectre v2. The spec-
ulation window size depends on how fast the CPU determines that
the target in the branch history buffer does not match the actual
target. Table 3 shows the speculation window sizes depending on
the location of the indirect branch target.

Store to load forwarding. Modern CPU designs feature store
and load queues, which capture the effects and dependencies of
corresponding load and store operations before the data is even
written to or read from the cache. This infrastructure allows for
efficient store to load forwarding: if an instruction writes to a cer-
tain memory address and a following instruction reads from that
very address, the CPU can leverage the result of the first instruc-
tion, which is written to the store queue, for executing the second
instruction. This avoids unnecessarily stalling the execution of the
second instruction until the first is retired. In a recent attack, this
behavior has been used for a “speculative buffer overflow” [28].

We are interested in the behavior a failed store to load forward-
ing causes. In this case, we deviate from our default Speculator
template and remove the branch instruction. Instead, we create a
snippet with a data dependency that is not detected by the CPU in
a combination with a sequence of store and load operations that
triggers store-to-load forwarding.

Indirect branch target location Broadwell Skylake Zen

Register 28 22 24
Cached memory 41 34 35
Uncached memory 154 303 301

Table 3: Speculation window of an indirect control flow transfer,

measured in cycles. The speculation window size depends on where

the target of the indirect control flow transfer is stored.

Running the snippet in Speculator reveals that store-to-load for-
warding fails and the load instruction is in fact executed twice. This
means that a failed store-to-load forwarding also creates a situation
similar to speculative execution results being discarded because of
a mispredicted branch, although it provides a significantly smaller
speculation window.

Spectre v4 (a speculative store bypass) makes use of speculative
execution through store-to-load forwarding. For this trigger we
measure a speculationwindow of 55 cycles on average on Broadwell.
We also measure the speculatively executed instructions using FNOP,
which provides us with an upper bound for the speculation window
in terms of instructions. We measure an average of 15 µops with a
maximum of 23 µops (Figure 5).

0 40 80 120 160

FNOPs injected

95

135

175

215

255

295 uops executed

uops retired

Figure 5: Speculation window of a store-to-load forward failure,

measured in executed FNOPs on Broadwell.

Max speculation with optimized instruction sequence. Dur-
ing our experiments, we observed multiple situations in which the
CPU back-end stalled. For instance, the CPU could stall due to ex-
haustion of execution units for a certain operation (e.g. MOV, MUL)
or, for instance, data dependencies of multiple operations where
one or more data loads caused cache misses. In a hypothetical sce-
nario, we wanted to verify how many non-NOP executed µops the
CPU speculates within the maximum time window (e.g. access to
uncached memory in combination with a DIV instruction). Based
on the layout of the back-end of our Broadwell CPU under test,
to the best of our abilities, we crafted an optimized sequence of
instructions to account for the delay of each operation and the
available execution unit. Our tests show that the maximum number
of non-trivial speculated instructions we could achieve was 160,
with 187 being the maximum for FNOP.

4.6 Stopping Speculative Execution

Many instruction set architectures feature an instruction that stops
speculative execution in the sense that no following instruction
is speculatively executed. On x86 (and x86_64), one such instruc-
tion is lfence, short for “load fence”, the name reflecting its initial
purpose of serializing all memory load operations issued prior to
this instruction. In addition to this behavior, it also works as a bar-
rier for speculative execution: the operational description in Intel’s
manual [5] specifies that lfence waits on following instructions
until preceding instructions complete.

We verify this behavior using Speculator by creating a snippet
with an lfence instruction followed by an increasing sequence of
regular instructions. As expected, the counter for executed µops

8

remains constant among the test runs irrespective of the number
of instructions following lfence.

4.7 Executable Page Permission

Memory page permissions control access to memory regions at
page-level granularity. As we have seen with Meltdown and Fore-
shadow, such permission checks might be lazily evaluated after an
instruction is already executed, but before it is retired. Related work
has so far focused on data read or write access to memory pages.

In this test we focus on whether execute permissions set by the
NX bit are enforced. The NX bit is part of a hardware extension
introduced by modern processors to mitigate stack-based code
injection exploits, among others. If the control flow of a program
is diverted to a page without execute permissions, the processor
will trap into the kernel to handle the fault. This raises the question
of whether during speculative execution it is possible to execute
instructions from a page without such a permission set.

Our corresponding experiment sets up a branch misprediction
with a following control flow transfer to a non-executable memory
region, to test whether instructions in it are (speculatively) executed.
We ensure that the data from the page is in the L2 cache during
speculative execution and the addresses are in the TLB. The result of
the experiment is that the execute page table permission is honored
during speculative execution by all architectures we examined. This
is even true if an instruction spans over two pages: it will not be
executed if the second page is set non-executable.

4.8 Memory Protection Extensions

Instead of performing bounds checks purely in software, Intel’s
MPX instruction set extension [40] available on the Skylake plat-
form provides hardware support for both efficiently keeping track
of bounds information associated with pointers and correspond-
ing spatial memory checks before dereferencing pointers. Pointer
bounds information is stored in memory and loaded to dedicated
registers before it can be used to check the upper bound using the
bndcu and the lower bound using the bndcl instruction. If a bound
check fails, a #BR exception is raised and the CPU traps into the
kernel.

We used Speculator to measure if and howmuch code following
a bounds check instruction is speculatively executed. The setup
executes the regular code path without the bounds violation for ten
iterations and then fails on a bndcu twice. Tomeasure the speculative
execution window size, we first used an increasing run of NOPs
in conjunction with a terminating slow LEA marker instruction.
In this experiment, we measured that we speculatively execute
the marker instruction for a sled of up to 122 NOPs. In our second
experiment, we used FNOP instead of regular NOP, which is tracked
by the UOPS_EXECUTED counter. As is shown in Figure 6a, in this case,
the number of executed µops increases up to a sled of 22 FNOPs and
remains constant beyond.

4.9 Issued vs. Executed µops
Some of the counters that we adopt as markers (e.g. UOPS_ISSUED.
SINGLE_MUL, UOPS_ISSUED.SLOW_LEA) count the number of µops that
are issued, as opposed to executed. Since issued µops are not neces-
sarily executed, as is the case for the NOP instruction, we performed

0 50 100 150 200

FNOPs injected

482

487

492

497

502

507

u
o
p
s
 e

x
e
c
u
te

d

(a) MPX

0 20 40 60 80

number of issued "slow" lea operations

33

46

59

72

85

(b) Issued vs Executed

Figure 6: a) Speculative execution after an MPX bounds violation.

b) Performance counter numbers for an increasing number of spec-

ulatively executed relative load instructions. The graph shows that

the number of issued instructions corresponds to the number of ex-

ecuted instructions, justifying the use of such instructions as mark-

ers.

a dedicated experiment to verify whether they are also executed.
We use the template introduced in Section 3.4 and generate tests
where the code snippet just contains an increasing number of RIP-
relative load instructions. As Figure 6b demonstrates, the number
of executed µops increases at the same rate as the counter for slow
load effective address instructions, which are load µops with three
sources. This result confirms that the instruction is not only issued:
its speculative execution does takes place. We obtain similar results
for other markers.

5 USING SPECULATOR: ANALYZING

ATTACKS AND MITIGATIONS

We also use Speculator to investigate new techniques to exploit
speculative execution attacks. On one hand, we can use Specula-
tor to perform measurements on snippet of code to verify their
behavior during speculation and verify that an attack might be
feasible through those instructions (An example is described in
the Annex B).

On the other hand, some of the attacks require two threads inter-
acting with each other through a shared element such as the cache,
the branch predictor or the RSB. For instance, during a Branch Tar-
get Injection (BTI) generally there is an attacker thread that trains
the branch predictor which is shared between threads on the same
physical core, and a victim thread that is condition by the attacker’s
training. We design Speculator to support also an attack/victim
scenario and used to analyze RSB and BTI (Section 5.2).

Even though speculative execution markers cannot be used in a
real world attack since they require root access to the machine, they
represent a valuable information source to verify the feasibility of
a technique in a controlled and noise-free environment. Once an
attack is proven to be working with speculative markers, it is easier
to transition to methodology that do not require root access but
that tend to be more noisy like cache side channels.

5.1 SplitSpectre

Here we try to mount a modified version of Spectre v1 we call
SplitSpectre. Conceptually, we want to try to run a Spectre v1
attack with the attacker being able to provide the second of the two

9

array accesses required. The aim is to lower the requirements for the
attack, as gadgets for Spectre v1 are difficult to find in real software.
We provide a detailed description of this attack in the Annex B,
Figure 9.

We implement SplitSpectre on SpiderMonkey 52.7.4, Firefox’s
Javascript enginewith standard configuration parameters. Although
we found a real-world gadget corresponding to this attack easily (us-
ing string.charCodeAt), we were not able to make the exploit work.
For a depiction of this attack, we refer to the Annex B, Figure 10.

To better understand the issues leading to the failed exploitation,
we extracted the corresponding sequence of instructions from the
trace of the attack and used them as a test inside Speculator. The
result of the experiment show that the speculation window is too
short to perform both accesses. This fact is further confirmed when
we run the attack using a shorter function that we manually provide
in the Javascript engine: in this case, the attack is successful.

We can draw two important conclusions from the outcome of
this experiment. First of all, Speculator enables a systematic ap-
proach to the study of new attacks: i) formulate an hypothesis on
a possible speculative execution attack; ii) identify a target and
collect execution traces; iii) use the execution traces as part of a
Speculator snippet; iv) insert appropriate markers and gather re-
sults; v) repeat on all the desired architectures. Secondly, although
no exploitation of SplitSpectre is known, the attack is theoret-
ically feasible and there may be either architectures with a long
enough speculation window to enable immediate exploitation on
SpiderMonkey, or other exploitable targets with shorter gadgets.

5.2 BTI

One interesting scenario, we investigated with Speculator, is the
feasibility of BTI poisoning between co-located processes. We lever-
age the capability of Speculator to run in attacker and victim
mode. We design the victim process to perform an indirect call
to a certain location A. Also, at a location B, we insert a marker in-
struction that is never executed by the victim process. We structure
the attacker process with an indirect call aligned with the call in
the victim process.

We run the test with attacker and victim on two co-located
threads. We start the attacker before the victim to make sure that
the indirect call in the attacker precede the one in the victim. Then,
we start the victim and we observe the counter of the speculative
execution marker at B. When the injection is successful, we observe
themarker at B to be speculative executed by the victim. Our success
rate is up to 82% over a thousand runs on Skylake and Kaby Lake
and up to 55% on Coffe Lake and Broadwell. We report no success
on AMD Ryzen.

5.3 Mitigations

Another interesting application of Speculator is to test attack
scenarios in the presence of mitigations. For instance, using the BTI
poisoning test describes in Section 5.2, we test the current Spectre v2
mitigations available in the kernel. We focus on the following three:
STIBP [26], IBRS [25] and IBPB [24]. These countermeasures require
either microcode updates, or kernel updates or both. Our findings
show that BTI between user space processes is mitigated only if

STIBP is forced on all the applications or enabled conditionally by
the use of SECCOMP or prctl from within the application.

It is worth noting that while these countermeasures are effective,
the default settings in all the machines we analysed do not enable
them, and very few application uses SECCOMP, and none prctl, to
enable request STIBP protection leaving them vulnerable to such
attacks. We leave the complete analysis of the remaining security
countermeasures implemented against SEAs to future work.

6 RELATEDWORK

Speculative Execution. Optimizing CPU instruction through-
put through speculative execution has been extensively analyzed
and implemented in the 1990s [31, 44, 49]. For information about
the microarchitecture of CPUs with respect to out-of-order and
speculative execution, we mostly have to rely on the material pro-
vided by the CPU manufacturers [2, 4, 5]. Unfortunately this ma-
terial often just provides software performance optimization re-
lated aspects, not providing details on how mechanisms such as
the branch predictor work. Agner Fog’s work [18] sheds light on
those details, providing detailed information backed by a substantial
amount of experimental research on the microarchitectural aspects
of CPUs. This information is leveraged in processor simulators such
as gem5 [10].

Cache Side Channels. Many Spectre variants rely on cache
side channels to infer the memory contents accessed by speculative
execution. Cache side channels have been extensively studied: First,
Tromer et al. introduced both the “evict-and-time” and “prime-and-
probe” techniques to efficiently perform a cache attack on AES [45].
Prime and probe is a popular technique, which was also used for
certain Spectre variants. “Flush-and-reload” [52] is a technique that
allows for higher precision and is used in NetSpectre. Recently,
other techniques such as “flush-and-flush” [21] and “prime-and-
abort” [15] were presented. Flush and flush leverages the fact that
clflush executes faster in case of a cache hit. Prime and abort makes
use of Intel’s transactional memory mechanism to detect when an
eviction has happened without the need to probe the cache.

Security Issues. At the beginning of 2018, three security issues
related to speculative execution known as Spectre and Meltdown
were revealed [29, 33, 54]. CPU vendors reacted with reports on
those issues [20, 23] and how they affected their CPU architec-
tures. These initial reports were followed by more security issues,
involving further speculative execution triggers [3, 8, 22] and side
channels [19], even affecting Intel’s virtualization and secure en-
clave technology SGX [47]. In addition to that, research groups have
established remote Spectre attack vectors over the network [42].
The classic buffer overflow to overwrite the return address on
the stack also has a speculative execution context twist, as shown
in [28, 30, 35].

Mitigations. Apart from the microcode updates shipped by
CPU vendors that are discussed earlier, certain mitigations against
SEAs can be implemented in software. Especially JavaScript engines
deployed mitigations against Spectre v1 such as diluting timing pre-
cision, disabling concurrent threads to prevent homebrew-timers
and masking pointer accesses to prevent speculative out-of-bounds
accesses [6, 11, 48]. Linux has deployed retpoline [46] in the kernel

10

to mitigate Spectre v2 by trapping mispredicted indirect branches
and the KAISER patches [13] to protect against Meltdown by sep-
arating page tables organization for user- and kernel space. Also
compiler tool chains have picked up the topic, with LLVM working
on introducing data dependencies on loads that might be specu-
latively executed [12, 37] and MSVC adding speculation barrier
instructions such as lfence to the compiled binary code [38]. At
the same time, research groups have proposed to address the issue
in silicon, such as adding microarchitectural shadow structures to
the CPU for leakage-free speculation [27] or exposing the microar-
chitectural state in the ISA [34].

7 CONCLUSION

In this paper, we shed light on security-relevant speculative execu-
tion and microarchitectural behavior. We presented Speculator,
a novel tool that allow targeted and precise measures of microar-
chitectural characteristics. Using Speculator, we then investigate
speculative execution. We study aspects such as the speculation
window for various speculative execution triggers, which is an im-
portant factor for the payload of a speculative execution attack. We
also show which events stop speculative execution and that some
security controls such as NX are still in effect during speculative
execution, while others do not act as a barrier such as Intel’s MPX
bounds checks.

We also show the use of Speculator to write PoC attacks and
test mitigations. Writing Speculator-ready tests, highly increase
the portability of PoCs and generic tests. We foresee Speculator
being used to share reproducible tests that can be employed to verify
in a more precise and reliable way the status of a system protection
as well as to further reverse engineer CPUs undocumented features.

We released our tool, Speculator, as open source and can be
found at: https://github.com/ibm-research/speculator

ACKNOWLEDGMENTS

This work was partially supported by the National Science Foun-
dation (NSF) under grant CNS-1703454 award, ONR grant "In-Situ
Malware Containment and Deception through Dynamic In-Process
Virtualization", and Secure Business Austria.

REFERENCES

[1] 2009. Performance Analysis Guide for Intel Core i7 Processor and Intel
Xeon Processors. https://software.intel.com/sites/products/collateral/hpc/vtune/
performance_analysis_guide.pdf.

[2] 2017. Preliminary Processor Programming Reference (PPR) for AMD Family
17h Models 00h-0Fh Processors. http://support.amd.com/TechDocs/54945_PPR_
Family_17h_Models_00h-0Fh.pdf.

[3] 2018. Analysis and mitigation of speculative store bypass. https:
//blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-
speculative-store-bypass-cve-2018-3639/.

[4] 2018. Intel Architectures Optimization Reference Manual. https:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf.

[5] 2018. Intel Software Developer Manual. https://software.intel.com/en-us/articles/
intel-sdm.

[6] 2018. JIT mitigations for Spectre. https://github.com/Microsoft/ChakraCore/
commit/08b82b8d33e9b36c0d6628b856f280234c87ba13.

[7] 2018. Rogue System Register Read. https://software.intel.com/security-software-
guidance/software-guidance/rogue-system-register-read.

[8] 2018. SPECULATIVE STORE BYPASS DISABLE.
[9] AMD. 2017. Software Optimization Guide for AMD Family 17th Proces-

sors. https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_
17h_Processors_3.00.pdf.

[10] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer
Architecture News 39, 2 (Aug. 2011).

[11] Mathias Bynens. 2018. V8 Untrusted code mitigations. https://github.com/v8/v8/
wiki/Untrusted-code-mitigations.

[12] Chandler Carruth. 2018. Speculative Load Hardening. https://lists.llvm.org/
pipermail/llvm-dev/2018-March/122085.html.

[13] Jonathan Corbet. 2017. KAISER: hiding the kernel from user space. https:
//lwn.net/Articles/738975/.

[14] Arnaldo Carvalho de Melo. 2010. The New Linux ‘perf’ tools. http://www.linux-
kongress.org/2010/slides/lk2010-perf-acme.pdf.

[15] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX.
In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,
Vancouver, BC, 51–67. https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/disselkoen

[16] Stephane Eranian. 2006. Perfmon2: a flexible performance monitoring interface
for Linux. In Proc. of the 2006 Ottawa Linux Symposium. 269–288.

[17] Agner Fog. 2017. Test results for AMD Ryzen. https://www.agner.org/optimize/
blog/read.php?i=838&v=t.

[18] Agner Fog. 2018. The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers. https:
//www.agner.org/optimize/microarchitecture.pdf.

[19] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security Symposium.

[20] Richard Grisenthwaite. 2018. Cache Speculation Side-channels. https://developer.
arm.com/-/media/Files/pdf/Cache_Speculation_Side-channels.pdf.

[21] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, Juan Caballero, Urko Zurutuza, and Ricardo J.
Rodríguez (Eds.). Springer International Publishing, Cham, 279–299.

[22] Jann Horn. 2018. Spectre v4. https://bugs.chromium.org/p/project-zero/issues/
detail?id=1528.

[23] Intel. 2018. Analysis of Speculative Execution Side Channels.
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf.

[24] Intel. 2018. Deep Dive: Indirect Branch Predictor Barrier. https:
//software.intel.com/security-software-guidance/insights/deep-dive-indirect-
branch-predictor-barrier.

[25] Intel. 2018. Deep Dive: Indirect Branch Restricted Speculation.
https://software.intel.com/security-software-guidance/insights/deep-dive-
indirect-branch-restricted-speculation.

[26] Intel. 2018. Deep Dive: Single Thread Indirect Branch Predictors.
https://software.intel.com/security-software-guidance/insights/deep-dive-
single-thread-indirect-branch-predictors.

[27] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2018. SafeSpec:
Banishing the Spectre of a Meltdown with Leakage-Free Speculation. CoRR
(2018). http://arxiv.org/abs/1806.05179

[28] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:
Attacks and Defenses. https://people.csail.mit.edu/vlk/spectre11.pdf.

[29] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In IEEE Symposium on Security and Privacy.

[30] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael B. Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the
Return Stack Buffer. CoRR (2018). http://arxiv.org/abs/1807.07940

[31] Butler W. Lampson. 2008. Lazy and Speculative Execution in Computer Systems.
In ACM SIGPLAN Conference on Functional Programming.

[32] John Levon. 2002. Oprofile. http://oprofile.sourceforge.net.
[33] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In USENIX Security Symposium.

[34] Jason Lowe-Power, Venkatesh Akella, Matthew K. Farrens, Samuel T. King, and
Christopher J. Nitta. 2018. Position Paper: A Case for Exposing Extra-architectural
State in the ISA. In Proceedings of the 7th International Workshop on Hardware
and Architectural Support for Security and Privacy.

[35] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution
Using Return Stack Buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18). ACM, New York, NY, USA,
2109–2122. https://doi.org/10.1145/3243734.3243761

[36] Andrea Mambretti, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, and Anil Kurmus. 2019. Two methods for exploiting speculative

11

https://github.com/ibm-research/speculator
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
http://support.amd.com/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856f280234c87ba13
https://github.com/Microsoft/ChakraCore/commit/08b82b8d33e9b36c0d6628b856f280234c87ba13
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://software.intel.com/security-software-guidance/software-guidance/rogue-system-register-read
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://github.com/v8/v8/wiki/Untrusted-code-mitigations
https://github.com/v8/v8/wiki/Untrusted-code-mitigations
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.agner.org/optimize/blog/read.php?i=838&v=t
https://www.agner.org/optimize/blog/read.php?i=838&v=t
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://developer.arm.com/-/media/Files/pdf/Cache_Speculation_Side-channels.pdf
https://developer.arm.com/-/media/Files/pdf/Cache_Speculation_Side-channels.pdf
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
http://arxiv.org/abs/1806.05179
https://people.csail.mit.edu/vlk/spectre11.pdf
http://arxiv.org/abs/1807.07940
http://oprofile.sourceforge.net
https://doi.org/10.1145/3243734.3243761

control flow hijacks. In 13th USENIX Workshop on Offensive Technologies (WOOT
19). USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/
woot19/presentation/mambretti

[37] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof
Fetzer. 2018. You Shall Not Bypass: Employing data dependencies to prevent
Bounds Check Bypass. CoRR (2018). http://arxiv.org/abs/1805.08506

[38] Andrew Pardoe. 2018. Spectre mitigations in MSVC. https://blogs.msdn.microsoft.
com/vcblog/2018/01/15/spectre-mitigations-in-msvc/.

[39] Mikael Pettersson. 2006. PerfCtr. http://user.it.uu.se/~mikpe/linux/perfctr/.
[40] Sundaram Ramakesavan and Juan Rodriguez. 2016. Intel Memory Protection Ex-

tensions EnablingGuide. https://software.intel.com/en-us/articles/intel-memory-
protection-extensions-enabling-guide.

[41] T. RÃűhl, J. Eitzinger, G. Hager, and G. Wellein. 2017. LIKWID Monitoring Stack:
A Flexible Framework Enabling Job Specific Performance monitoring for the
masses. In IEEE International Conference on Cluster Computing (CLUSTER).

[42] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. NetSpectre: Read Arbitrary Memory over Network. In Computer Security –
ESORICS 2019, Kazue Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.). Springer
International Publishing, Cham, 279–299.

[43] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
performance data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, 157–173.

[44] Kevin B. Theobald, Guang R. Gao, and Laurie J. Hendren. 1993. Speculative
Execution and Branch Prediction on ParallelMachines. In International Conference
on Supercomputing.

[45] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks
on AES, and Countermeasures. Journal of Cryptology 23, 1 (01 Jan 2010), 37–71.
https://doi.org/10.1007/s00145-009-9049-y

[46] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886.

[47] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In USENIX Security Symposium.

[48] Luke Wagner. 2018. Mitigations landing for new class of timing at-
tack. https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-
class-timing-attack/.

[49] David W. Wall. 1991. Limits of Instruction-level Parallelism. In Proceedings of
the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV). ACM, New York, NY, USA, 176–
188. https://doi.org/10.1145/106972.106991

[50] Vincent M Weaver. 2013. Linux perf_event features and overhead. In The 2nd
International Workshop on Performance Analysis of Workload Optimized Systems,
FastPath, Vol. 13.

[51] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval Yarom.
2018. https://foreshadowattack.eu/foreshadow-NG.pdf.

[52] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-channel Attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14). USENIX Association, Berkeley, CA,
USA, 719–732. http://dl.acm.org/citation.cfm?id=2671225.2671271

[53] Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth. 2009. Accuracy of
performance counter measurements. In Performance Analysis of Systems and
Software, 2009. ISPASS 2009. IEEE International Symposium on. IEEE, 23–32.

[54] Google Project Zero. 2018. Reading privileged memory with a side-
channel. https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-
memory-with-side.html.

A FURTHER FINDINGS

A.1 Out-of-order execution bandwidth

Speculative execution is no different in how it uses the resources
available in both the front- and the back-end of a CPU compared to
regular execution. On Intel platforms, instructions that have been
fetched and decoded into µops by the front-end are entered in the
reorder buffer of the back-end. This buffer contains all µops that
are currently “in flight”, which means they are either ready for
execution, are currently being executed, or have finished execution.
The buffer’s name derives from the fact that on modern CPUs
µops are executed out-of-order. This means they are dispatched
to execution units based on their data flow dependencies, rather
than the control flow of the program. After being executed, they

remain in the reorder buffer until they are retired. Retirement of
µops happens at an assembly-instruction granularity and in-order,
honoring the control flow of the program. When µops are retired,
the outcome of their computation is committed to the program’s
state.

The size of the reorder buffer is a natural upper bound on the
length of a sequence of instructions that can be speculatively exe-
cuted. That is, the reorder buffer would hold the branch instruction
that triggered speculative execution plus the instructions of the
code path being speculatively executed. The branch instruction is
the first one that is retired in-order, potentially causing all other
µops in the buffer to be canceled in case of misprediction. If the
branch instruction takes time to retire, e.g. because it depends on a
compare that requires a slow memory access, chances are higher
that the reorder buffer is filled with µops that are speculatively
executed than for a branch that retires quickly. If the reorder buffer
is full, the whole CPU back-end stalls.

A large reorder buffer is beneficial for attacks that exploit spec-
ulative execution because it lets a larger amount of instructions
be speculatively executed, enhancing the capabilities of a specu-
lative execution attacker. While the size of the reorder buffer is
typically a known attribute of a CPU, we decided to empirically
verify this number to show how precise measurements taken by
Speculator are. In our experiment, we use the UOPS_EXECUTED.CORE
counter (see Section 3.5). Since the counter operates at the gran-
ularity of a core, we disable SMT to reduce the noise caused by
Hyperthreads that are scheduled on the same core. We also use the
BR_MISP_RETIRED counter, which counts the number of mispredicted,
retired branch instructions.

When relying on the count of executed µops to measure the
reorder buffer size, we need to keep in mind that the µops actu-
ally need to execute before the branch that triggered speculative
execution is retired. This means we need instructions that execute
quickly to achieve maximum throughput. Since “regular” instruc-
tions would easily saturate the available execution ports and units,
we pick the NOP instruction. NOP is decoded into a single µop, which
occupies a single slot in the reorder buffer. It does not actually exe-
cute and thus neither requires an execution unit nor is it captured by
the counter that measures executed µops. We thus put an arbitrary
regular instruction as a marker at the end of the NOP-sled, increasing
the latter in size for each test generated. When running this test
with Speculator, we expect to measure a constant amount of µops
executed up to the point, where the NOP-sled takes up all slots in the
reorder buffer and the terminating instruction is no longer specula-
tively executed. Indeed, the results match our expectation: as can
be seen in Figure 7, the number of executed µops is constant up
until 188 NOPs on Broadwell and 220 NOPs on Skylake. In addition to
the NOPs we also need to account for the branch instruction, taking
up two slots in the reorder buffer as well as the marker instruction,
taking up yet another two entries. In total, this is in line with the
specifications published by Intel, which state a reorder buffer size
of 192 entries for Broadwell and 224 entries for Skylake.

Interestingly, the number of executed instructions differs for
the architectures: it is 34 and 32 for Broadwell and 32 to 30 for
Skylake, in spite of the code being exactly the same. Presumably,
this is caused by extended µop-fusion introduced as optimization
on Skylake. Fused µops count as a single µop.

12

https://www.usenix.org/conference/woot19/presentation/mambretti
https://www.usenix.org/conference/woot19/presentation/mambretti
http://arxiv.org/abs/1805.08506
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
https://blogs.msdn.microsoft.com/vcblog/2018/01/15/spectre-mitigations-in-msvc/
http://user.it.uu.se/~mikpe/linux/perfctr/
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://software.intel.com/en-us/articles/intel-memory-protection-extensions-enabling-guide
https://doi.org/10.1007/s00145-009-9049-y
https://support.google.com/faqs/answer/7625886
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://doi.org/10.1145/106972.106991
https://foreshadowattack.eu/foreshadow-NG.pdf
http://dl.acm.org/citation.cfm?id=2671225.2671271
https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

0 30 60 90 120 150 240188 220

number of NOPs

30

31

32

33

34

u
o
p
s
 e

x
e
c
u
te

d

Skylake

Broadwell

Figure 7: Reorder buffer size test results on Broadwell and Skylake.

Since themarker instruction is no longer executed for a sufficiently

large number of NOPs, the number of executed µops drops at the size
of the reorder buffer.

AMD’s Zen platform has a construct similar to Intel’s reorder
buffer: the retire queue. Every µop that has entered the back-end
and not been either retired or canceled takes a slot in this queue.
Our Ryzen CPU does not feature a counter for executed µops, so we
can only provide a measurement based on our marker instruction in
this case. The marker instruction, which takes up four µops in this
case, is executed up until 186 NOPs. This is in line with the size of the
retire queue, which is specified to have 192 entries (= 186 + 2 + 4).
Interestingly, the speculation window seems to be halved when we
switch off SMT: we recognize execution of the marker instruction
only up to 91 NOPs.

A.2 Empty RSB behavior in pre-Skylake CPUs

During our RSB test, we run the test on all the Intel machines we
have available that are listed in Table 1. Meanwhile the results
related to the actual length of the RSB give us expected results, we
notice that the behavior of the CPU after the RSB is emptied is
different for machine pre-Skylake.

0 2 4 6 8 10 12 14 16 18 20 22

call stack depth

0

1

2

3

4

5

6

7

8

m
a
rk

e
r

h
it

Failed load to store forward

Mispredicted Branches

Figure 8: RSB test on Broadwell. As in the AMD case, Broadwell is

able to predict the location of our target even if the RSB is empty.

As Figure 8 shows, the CPU (in this case a Broadwell CPU) is
still able to hit the expected return location around 25% of the time
even though the RSB is actually empty. This behavior differs with
the one of newer machines like Kaby Lake presented in Figure 3.
This indicates that the re-design that happened in Skylake, and its
optimizations, affected the second line of prediction in case of very
deep call stack like the one we purposefully tested.

B SPLITSPECTRE

B.1 The Gadget

In Spectre v1, the victim code that is executed speculatively (“gad-
get”) consists of three components: i) a conditional branch on a
variable, typically a length check, ii) a first array access that uses
the variable from the conditional branch as an offset, and iii) a
second array access that uses the result of the first array access as
an offset. If the conditional branch triggers speculative execution
of the following array accesses (phase ➌ described in Section 2.2),
the first array access may access an out-of-bounds memory region,
revealing the contents of this region through a side channel (phase
➍) by measuring the access time to the second array after executing
the gadget (phase ➎).

Although Spectre v1 is powerful and does not rely on SMT, it
requires such a gadget to be present in the victim’s attack surface.
Google Project Zero writes in their original blog post on Spectre
v1 [54] that they could not identify such a vulnerable code pattern in
the kernel, and instead relied on eBPF to place one there themselves.

In this point lies the idea of our Spectre v1 variant, SplitSpectre.
As its name implies, it splits the Spectre v1 gadget into two parts:
one consisting of the conditional branch and the array access (phase
➌), and the other one consisting of the second array access that
constitutes the sending part of the side channel (phase ➍). This has
the advantage that the second part, phase ➍, can now be placed
into the attacker-controlled code. It is more likely that an attacker
finds such gadgets, thereby alleviating one of the main difficulties
of performing a v1 attack. Furthermore, the attacker can choose to
employ amplification of a v1 attack by reading multiple indices of
the second array to deal with imprecise time sources.

Figure 9 compares the regular Spectre v1 with our split version.
As shown in the figure, the speculation window needs to be suffi-
ciently large such that it still covers the second part. We define the
speculation window (short for speculative execution window) as the
time interval between the event that triggers speculative execution,
e.g. a branch condition, and the point in time when it is resolved
and the speculatively executed instructions are either retired or
rolled back. The speculation window is measured in cycles and
determines how many instructions of a given sequence are specu-
latively executed. The number of instructions of a given sequence
that can be speculatively executed at a given time also depends on
the CPU’s microarchitecture. For example, some instructions are
more “expensive” in the sense that they are split into a number of
µops, and thus take a long time to execute. Also, the combination
of instructions in a sequence affects how fast they execute: similar
instructions might lead to congestion on the execution ports, as
they require similar execution units.

The speculation window caps the maximum number of instruc-
tions executed between the two parts. Extending the length of the
speculation window is an instrumental part in extending the ca-
pabilities of a speculative execution attacker and the reach of a
SplitSpectre attack. In the course of the paper, we show how we
use Speculator to evaluate SplitSpectre and speculative execu-
tion aspects relevant to its feasibility.

13

speculation

window

Attacker Victim

train branch predictor

flush cache

victim(i)

if (i < sizeof(array1)

 j = array1[i]

 v = array2[j]

for (i in sizeof(array2))

 time(array2, i)

(a) Regular Spectre v1. The gadget requires two dependent array ac-

cesses in the victim’s attack surface.

speculation

window

Attacker Victim

train branch predictor

flush cache

victim(i)

if (i < sizeof(array1)

 j = array1[i]

v = array2[j]

for (i in sizeof(array2))

 time(array2, i)

(b) Split Spectre v1. The second, dependent array access from a reg-

ular v1 gadget moves to the attacker code.

Figure 9: A comparison of regular Spectre v1 and SplitSpectre.

While SplitSpectre only requires a simple array access, the spec-

ulation window needs to be sufficiently large to contain both the

gadget and the second array access exercised by the attacker.

SpiderMonkey

compiled trace

a = victim(i)

b = array[a]

Javascript code

native function

int victim(i) {

 if (i < array2.len)

 return array2[i];

}

JIT SplitSpectre
Part 2

(attacker controlled)

SplitSpectre
Part 1

(runtime provided)

Figure 10: A conceptual view of a SplitSpectre attack instance

with JavaScript.

B.2 The Analysis

We mounted a SplitSpectre attack in a real-world setting. We
chose a browser-like setting, where untrusted JavaScript is executed
in a trusted runtime environment, establishing a privilege boundary.
Recall that a v1 gadget consists of a bounds check and two array
accesses, the first one using the provided index and the second one
using the content of the first array at that position as an index into
the second array. In order to mount a regular Spectre v1 attack,
we would require a complete Spectre v1 gadget available in the

0 7 14 21 28 35 42 49 56 63 70 77 84

Instructions

34

44

54

64

74

84

94

104

114

124

u
o
p
s
 e

x
e
c
u
te

d

Coffee Lake

Successful attack

Figure 11: An examination of the SplitSpectre execution trace be-

tween the length check of string.charCodeAt_impl() and the sec-

ond array access using Speculator. The graph shows our results of

the test on a Coffee Lake machine. It shows that, on average, we are

not reaching the second array access in speculative execution. The

small spikes in the graph are caused by mispredicted branches in

the trace itself, which lead to nested speculative execution of fast-

executing code paths.

JavaScript engine. The intuition behind SplitSpectre permits us to
relax this requirement and only require the first half of a V1 gadget,
i.e. the bounds check and the first array access. The second half
of this gadget is provided by attacker-controlled JavaScript code
(Figure 10). The attack can only work if speculative execution spans
across the privilege boundary from the bounds check in the runtime
environment to the second array access in the attacker-controlled,
unprivileged code.

We implemented SplitSpectre on SpiderMonkey 52.7.4 – Fire-
fox’s JavaScript engine. We use the standard configuration parame-
ters and conducted experiments on our Haswell, Coffee Lake, and
Ryzen CPUs.

We start our experiments by introducing a built-in native Java-
Script accessor function to SpiderMonkey’s source code that returns
the content of a pre-allocated array at a given index. This function
is the first part of the speculative execution gadget that needs to
be part of the victim’s attack surface. To simplify the code, we
explicitly flush the bounds of the array. Our attacker code is an
adapted regular V1 PoC code for JavaScript JIT engines, with just
the first array access replaced by the call to the victim function.
The time measurement is done using the SharedArrayBuffer tech-
nique, which reads the content of such a buffer while it is being
incremented in the background by a web worker that is running in
parallel.

The attack is successful. That is, on our Coffee Lake platform, we
leak a string of ten characters with a success rate of over 86.2%, and
we leak the full string with a success rate of 46% (i.e., see Table 4).
Investigating the distance between the two parts of the speculation
gadget, we measure the distance after 50 training runs of the Java-
Script code that causes Spidermonkey’s tracing JIT to compile an
optimized IonJIT trace implementing the JavaScript code in assem-
bly. The distance between the bounds check and the second array
access is 43 instructions, which is small enough for the attack to
produce reliable results.

14

Haswell Coffee Lake

Runs 100 100

Only highest scoring char 76.6% 76.8%
1st and 2nd highest scoring char 80.7% 86.2%
Full string leaked 10% 46%

Table 4: Success rates for the SplitSpectre attack on JavaScript.We

perform 100 runs, each run trying to leak a string of 10 consecutive

characters.We provide numbers on both the highest and the second

highest scoring characters.

Weproceedwith our experiments by replacing our native built-in
functionwith code already present in the SpiderMonkey source. Our
scan for a suitable gadget reveals the built-in string.charCodeAt()

function, which returns the character code of a string at a given in-
dex and is implemented in native code. Internally, string.charCodeAt
() calls string.charCodeAt_impl(), which includes the bounds check
and actual access. Unfortunately, the speculation window is not
large enough for the attack to work with string.charCodeAt(): Af-
ter 50 training runs, the distance between the compare in string.

charCodeAt_impl() and the dereference of the second array in the
JIT trace is 90 instructions. An examination of the extracted execu-
tion trace with Speculator shows that the number of speculatively
executed µops is, on average, slightly lower than necessary for a
successful attack (Figure 11). This means that in this scenario, the
crucial load instruction is not always reached during speculative
execution.

We also examine the execution trace on an AMD Ryzen CPU
using a marker instruction, since the Zen performance counters do
not feature a generic counter for executed instructions. We observe
the marker instruction being executed for the full length of the
trace. However, even here, the granularity of the time measurement

is too coarse-grained to permit a successful read of the cache side
channel. Amplifying the attack by adding multiple dependent array
accesses would extend the trace so that it no longer fits into the
speculation window.

We further optimize the attack by reducing the amount of code
that is executed between the bounds check and the second access.
This is achieved by implementing the second access and the call
to the victim function in web assembly, which allows even more
attacker control over the compiled JIT trace. However, using We-
bAssembly actually increases the number of instructions between
the compare and the second access to 107. This is because the na-
tive call is not made directly from within the WebAssembly. Rather,
additional JavaScript glue code is invoked.

JIT engine authors have already reactedwith countermeasures [11,
48] in order to mitigate Spectre v1 in the context of browsers.
These countermeasures mostly address sources for high-precision
timers. Diluting the timing and disabling homebrew sources such
as SharedArrayBuffers mitigate this version of JavaScript Split-
Spectre. However, it remains to be seen if amplification of the
attack’s timing properties make it feasible if only coarse-grained
time sources are available.

On top of timing-related countermeasures, the V8 engine also
masks addresses and array indices in JITted code before derefer-
ences. While this mitigates a standard Spectre v1 attack, it does not
help with SplitSpectre, where the bounds check is actually not
exercised in JITted code, but the engine code itself.

Our analysis lead us to conclude that the attack is viable, and
that the ability to trigger it in practice depends on the identified
microarchitectural properties of individual CPU families. We leave
a comprehensive analysis of these properties for the various CPU
architectures/models as an item of future work, which can be aided
by Speculator.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Attack scenarios, Privilege boundaries
	2.2 SEA Phases
	2.3 Privilege boundaries and attack impact

	3 Speculator
	3.1 Performance Monitor Capabilities
	3.2 Objectives
	3.3 Design and Implementation
	3.4 Triggering Speculative Execution
	3.5 Speculative Execution Markers

	4 Using Speculator: Dissecting the microarchitectural world
	4.1 Return Stack Buffer Size
	4.2 Nesting Speculative Execution
	4.3 Speculative execution across system calls
	4.4 Flushing the Cache
	4.5 Speculation window size
	4.6 Stopping Speculative Execution
	4.7 Executable Page Permission
	4.8 Memory Protection Extensions
	4.9 Issued vs. Executed ops

	5 Using Speculator: Analyzing attacks and mitigations
	5.1 SplitSpectre
	5.2 BTI
	5.3 Mitigations

	6 Related work
	7 Conclusion
	Acknowledgments
	References
	A Further Findings
	A.1 Out-of-order execution bandwidth
	A.2 Empty RSB behavior in pre-Skylake CPUs

	B SplitSpectre
	B.1 The Gadget
	B.2 The Analysis

