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Abstract—Digital certificates are frequently used to secure com-
munications between users and web servers. Critical to the Web’s
PKI is the secure validation of digital certificates. Nonetheless,
certificate validation itself is complex and error-prone. Moreover,
it is also undermined by particular constraints of mobile browsers.
However, these issues have long been overlooked. In this article,
we undertook the first systematic and large-scale study of the
certificate validation mechanism within popular mobile browsers to
highlight the necessity of reassessing it among all released browsers.
To this end, we first compile a comprehensive test suite to identify
security flaws in certificate validation from various aspects. By de-
signing and implementing a generic, automated testing pipeline, we
effectively evaluate 30 popular browsers on two mobile OS versions
and compare them with five representative desktop browsers. We
found the latest mobile browsersAccept as many as 33.2% invalid
certificates and Reject merely 5.4% invalid ones on average,
leaving the majority of them to be decided by users who usually
have little expertise. Our findings shed light on the severity and
inconsistency of certificate validation flaws across mobile browsers,
which are likely to expose users to MITM attacks, spoofing attacks,
and so forth.

Index Terms—The web’s PKI, certificate validation, mobile
browsers.

I. INTRODUCTION

S ECURE Socket Layer (SSL) and Transport Layer Security
(TLS) protocols, coupled with the Public Key Infrastructure

(PKI), are pervasively used within the Web [1], [2] to fulfill
authenticity, confidentiality, and integrity of end-to-end commu-
nications. However, the actual use of certificates is intricate, and
thus plenty of issues [3], [4], [5], [6], [7], [8], [9] have arisen and

Manuscript received 1 January 2023; revised 23 February 2023; accepted
8 March 2023. Date of publication 13 March 2023; date of current version 12
January 2024. This work was supported by the National Science and Technology
Innovation 2030 of China – Major program of “New generation of artificial
intelligence” under Grant 2020AAA0107700, in part by the Key Program of the
National Natural Science Foundation of China under Grant 62032021, in part
by the Key Research and Development Program of Zhejiang Province, China
under Grant 2019C03133, in part by the Key Laboratory of Zhejiang Province,
China, and in part by the US NSF/CNS-2127200. (Corresponding author: Bo
Feng.)

Meng Luo and Kui Ren are with the School of Cyber Science and Tech-
nology & ZJU-Hangzhou Global Scientific and Technological Innovation
Center, Zhejiang University, Hangzhou, Zhejiang 310007, China (e-mail:
meng.luo@zju.edu.cn; kuiren@zju.edu.cn).

Bo Feng is with the School of Cybersecurity and Privacy, College of Com-
puting, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
bfeng64@gatech.edu).

Long Lu and Engin Kirda are with the Khoury College of Com-
puter Sciences, Northeastern University, Boston, MA 02115 USA (e-mail:
l.lu@northeastern.edu; e.kirda@northeastern.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TDSC.2023.3255869, provided by the authors.

Digital Object Identifier 10.1109/TDSC.2023.3255869

can lead users to man-in-the-middle (MITM) attacks, spoofing
attacks, and so forth.

Securing the Web’s PKI relies on not only trustworthy cer-
tificate issuance and management procedures but also reliable
certificate validation mechanisms. Specifically, certificate vali-
dation is implemented by a web browser on behalf of the user to
determine whether or not to trust a presented certificate for build-
ing a secure communication channel. The security community
has previously paid attention to certificate security [8], [10], [11],
as well as security issues with SSL/TLS implementations [12],
[13], [14], [15], [16]. Nonetheless, certificate validation of
browsers – especially mobile browsers – is strangely dismissed,
even though they may contain many unique flaws. Moreover,
there exist a surprisingly large number of certificates in the wild
that are invalid [6] and distinguishing malicious certificates from
other errors is extremely hard [17].

To fill this gap, in this work, we perform automated, large-
scale testing on certificate validation of mobile browsers. To
this end, we have to tackle the following challenges. First,
certificate validation is an extremely complex and error-prone
process, guided by multiple RFC standards (e.g., [18], [19],
[20], [21]) and CA/Browser baseline requirements [22]. Due
to vague documentation and internal conflicts, it is hard to
determine the best practice of certificate validation and compose
a comprehensive test suite for identifying security flaws.

The second challenge comes from automated testing. Certifi-
cate validation brings about additional latency and bandwidth
burden for browsers while loading web pages. Due to con-
strained resources, mobile browsers tend to selectively validate
certificates, resulting in significant discrepancies across differ-
ent browsers and devices. As such, it is necessary to leverage
dynamic analysis to evaluate mobile browsers. However, the
research challenge is how one can create a generic framework
capable of launching security testing of certificate validation on
a wide range of mobile browsers and OSes.

In this paper, we design, implement, and evaluate CVHunter
– a generic testing pipeline – that is capable of automatically
generating, verifying, and evaluating test certificates over mobile
browsers, as well as identifying security flaws of certificate vali-
dation. Orthogonal to prior work [12], [15], [23], [24], we lever-
age the relevant standards and adopt a rule-based approach for
creating an ample set of test cases focusing on security-critical
bugs instead of every variant of invalid certificates. To verify
test certificates specifically, we develop a baseline certificate
validation tool, which is later applied to be compared with
mobile browsers for the detection of problematic certificates.
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We evaluate CVHunter on five major desktop browsers (on
Windows) and thirty most popular mobile browsers, such as
Chrome, Firefox, and Brave, using two operating systems (An-
droid 6 and 10). We found that the latest mobile browsers could
Accept as many as 33.2% invalid certificates and Reject
merely about 5.4% invalid ones on average. The worst mobile
browsers even blindly Accept nearly all invalid certificates.
Next, the security of certificate validation is found to downgrade
by changing from desktop to mobile or reverting the operating
system. It is worth noting that mobile browsers are more con-
servative than desktop browsers to Reject invalid certificates
meaning that Warning pages are favored for alerting poten-
tial risks. Finally, we investigate the behavior of browsers for
handling invalid certificates in the wild.

The main contributions of this paper are summarized as
follows.
� We compiled a comprehensive test suite – consisting of

157 test cases from five categories – by understanding
the rules of multiple RFC standards and CA/B baseline
requirements, as well as consulting prior work.

� We designed and implemented a certificate validation tool
to verify test certificates and compared it to various popular
mobile browsers.

� We designed and implemented an automated and generic
testing pipeline for mobile browsers. To the best of our
knowledge, we are the first to systematically evaluate the
certificate validation logic of mobile browsers.

� Our findings shed light on the severity and inconsistency
of security flaws in certificate validation across mobile
browsers. Due to the widespread use of mobile browsers,
we highlight that incorrectly handling invalid certificates
can expose users to MITM attacks, spoofing attacks, and
so forth. Consequently, a detailed and concrete guideline is
needed to formalize a browser’s behavior towards different
types of invalid certificates.

The remainder of this paper is organized as follows. Section II
introduces background knowledge. The test suite is presented
in Section III. Section IV illustrates an automated evaluation
pipeline. In Section V, we demonstrate our evaluation results of
certificate validation on mobile browsers. Section VI analyzes
problematic certificates in the wild. Finally, we discuss the
related work and conclude this paper.

II. BACKGROUND

In this section, we give a brief introduction to the Web’s
PKI, certification validation mechanism, as well as the relevant
standards that guide certificate validation.

A. Web’s PKI

Today, the Web’s Public Key Infrastructure (shorted as the
Web’s PKI) plays a vital role in our daily lives. It secures a
wide range of online activities (e.g., shopping, banking, etc.) by
facilitating authentication and encrypted communication over
insecure public networks using digital certificates and public-
key encryption techniques.

Fig. 1. A simplified illustration of the Web’s PKI.

The security and privacy of the Web’s PKI require not only
secure issuance and management of certificates by Certificate
Authorities (CAs) and web servers, but also reliable certificate
validation mechanisms provided by browsers. As illustrated in
Fig. 1, CAs take the responsibility of authenticating the identity
of websites (or web servers), and then issue certificates. When
necessary, web servers present the issued certificates for creating
secure TLS connections with browsers. Before loading web
pages through the TLS session, browsers need to verify the
validity of presented certificates.

In case issued certificates are unwanted, CAs should revoke
the certificates immediately to avoid possible security conse-
quences. For example, the private keys of websites could be
disclosed and abused to hijack communications. Also, CAs
might be compromised by attackers to issue certificates ma-
liciously as they want. In any case, information about revoked
certificates should be propagated and notified to relevant entities,
e.g., browsers. Currently, there exist multiple ways of querying
certificate revocation status information, such as Certificate
Revocation List (CRL) and Online Certificate Status Protocol
(OCSP). In addition, a few browser vendors have maintained
some custom certificate revocation lists on their own. Therefore,
querying certificate status may be done either offline or online
during the certificate validation process.

B. Certificate Validation

Although attacks like man-in-the-middle may be prevented
by using digital certificates, it is not trivial to establish a secure
and reliable communication channel between the browser and
web server. That is to say, it entails browsers to take rigorous
certificate validation procedures while minimizing the page load
time. Otherwise, it is by no means reasonable for browsers to
trust certificates that could be potentially abused.

Certificate validation mainly involves: validating the chain of
trust, which includes a sequence of certificates delegating the
trust from one to another, checking the validity of all certifi-
cates, and matching the identity of the leaf certificate against a
website’s hostname. The chain of trust is built from a limited set
of trusted root certificates, through intermediate CA certificates,
to leaf certificates issued to websites. The root certificates are
self-signed certificates that have already been added to the trust
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store of browsers or OSes. In [25], Zhang et al. investigated
hidden root CAs imported to local stores but not in the public lists
of the root CAs, which are usually maintained by mainstream
OSes and browser vendors. However, detecting hidden root CAs
is out of the scope of this paper.

The X.509 certificate provides various basic and extension
fields for defining a certificate. To validate each certificate,
browsers need to check Signature to verify the certificate’s
integrity, Validity to ensure the certificate does not expire, Key
Usage to guarantee the usage of the certificate follows what it
intends for, and the revocation status. Besides, certificate valida-
tion also involves verifying the chain of trust. Specifically, along
with a certificate chain, there are multiple pairs of certificates
where the former one is the Issuer of the latter one. For validating
a certificate chain, browsers have to verify the trust relationship
one by one for the key, name chaining, and enforcement of
constraints. In name chaining, browsers verify that a certificate’s
Subject field is the same as the following certificate’s Issuer
field. In addition, to reduce risks, the certificate on a higher level
of trust can impose constraints (e.g., path length constraints,
name constraints, and policy constraints) over the subsequent
certificates. Last, a leaf certificate’s identity is matched against
the identity of a website presenting that certificate to determine
whether the certificate is used by the true owner. Note that some-
times more than one field is used to fulfill the same function, such
as Key Usage and Extended Key Usage. As a result, certificate
validation becomes a very complex and error-prone process.

C. Related Standards of Certificate Validation

RFC 5280 [18] and CA/B baseline requirements (BR) [22] are
the two primary standards we investigated. RFC 5280 defines the
format of X.509 certificates and the certificate validation process
in detail. The CA/B BR is drafted by the CA and Browser forum,
organized by major CAs and browser vendors, to guide the prac-
tical use of certificates. Apart from that, a few other standards
help to supplement the certificate validation. RFC 6125 [19]
defines the procedure of representing and verifying the identity
of domain-based application services. RFC 6960 [20] defines
the way of handling certificate revocations based on the Online
Certificate Status Protocol. RFC 6962 [21] defines certificate
transparency. Multiple reasons can hinder the correct validation
of digital certificates. On the one hand, securely implementing
the certificate validation mechanism requires browser develop-
ers to thoroughly investigate a wide range of standards and be
aware of potential security hazards. It will be a huge amount of
effort. On the other hand, as the X.509 certificate evolves, there
might be some internal inconsistencies within the X.509 certifi-
cate. But, this problem has not attracted much attention. Finally,
we refer to a wide range of relevant standards, online articles,
and open discussions for getting a comprehensive understanding
of the certificate validation process.

III. TEST SUITE OVERVIEW

To identify the noncompliance of certificate validation with
related standards and detect potential flaws within different
browsers, we compile a comprehensive and concise test suite
by referring to multiple RFC standards [18], [19], [20], [21]

(especially RFC 5280), CA/B baseline requirements [22], as
well as existing studies [12], [15], [16], [24]. Specifically, we aim
to make it not only comprehensive by covering a wide range of
issues, but also concise by focusing on security-critical bugs. In
this work, we try to generate certificates more likely to appear in
the wild instead of making ad-hoc tests or involving simple pol-
icy violations (e.g., basic format requirements). In other words,
we systematically investigated the semantic meaning and the
requirements for certificate fields and then figured out potential
violations, such as corner cases of values in (extension) fields
and interplay among multiple relevant (extension) fields. CAs
or browser developers are more likely to make such mistakes
inadvertently. Therefore, the evaluation based on these test cases
will have more security impact than the prior work, such as [12],
[26]. As shown in Table I, our test suite consists of 157 test
cases from five categories. We will introduce the philosophy
of generating tests for each category as follows. More details
regarding their potential threats are presented in the Appendix
(available online).

A. Key Intuition

We first investigate related resources listed above and then
figure out a set of rules surrounding each test category. However,
determining certificate validation rules is not trivial because
of the obscurity of documentation, conflicts between different
standards, and the introduction of new certificate fields sharing
similar functions to existing ones. To tackle these challenges, we
carefully search for and research the related online articles and
discussions, besides standard documentation, to consolidate our
expertise. Also, we define the principle of prioritizing security
and balancing the ease of enforcement if necessary. To this end,
we have to identify the strictest policies from multiple standards.
We found conflicts commonly occur between RFC standards
and CA/B BR and the policies of CA/B BR are usually stricter
and more fine-grained. As CA/B BR is updated and agreed
upon by major browser vendors and certificate authorities, we
favor CA/B BR mostly when conflicts exist. To be cautious in
determining rules, we also check the source code of reputable
browsers, namely Chrome and Firefox.

Later, the rules we have determined are treated as seeds for
generating tests. Using seed rules, we do not need to define
the way of rule violations exhaustively for the specific tests but
leverage them as core principles to produce security-related test
cases instead. For example, the identity of certificates can be
represented by two fields in X.509 certificate with different
formats, and thus related requirements should be applied to
handle diverse conditions. We develop a template-based system
to derive particular test cases of rule violations and generate
test certificates accordingly. To the best of our knowledge,
we propose the first comprehensive test suite for evaluating
certificate validation of browsers. More details on generating
test certificates from the test suite are in Section IV.

B. Certificate Field Value

The X.509 certificate is structured by a few basic fields and
extension fields (for Version 3 only). The fields all need to follow
particular format and value requirements. Nevertheless, not all
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TABLE I
AN OVERVIEW OF THE TEST SUITE

fields are considered security-related since we are not meant to
capture every illegal value. For example, we exclude fields such
as Serial Number. In addition, some fields are so important and
complicated that we need to put them into separate categories.
Finally, the fields checked here include:

1) Version: X.509 certificate version is either v1, v2, or v3.
Extension fields are introduced in v3. RFC 5280 states
that when extensions are used, the version must be v3.
In contrast, the CA/B BR requires the version should
be v3. As X.509 v3 certificate is prevalent and many
security-related restrictions rely on extensions, we adopt
the policy of CA/B. According to the rules, we produce
tests by combining valid (i.e., v1, v3) or invalid (e.g., v5)
versions, with or without extensions.

2) Subject name: Recognizing the correct identity of certifi-
cates is complicated and will be covered specifically. Here,
we focus on the format of identity representation and the
wildcard domain, which enables a certificate to be used
by multiple domain names. RFC 6125 [19] specifies a few
requirements for the use of the wildcard character in the
domain name to prevent abuses. According to the rules,
we craft diverse format violations regarding the identity
representation and the wildcard domain to generate tests.
For example, illegal positions of the wildcard character in
the domain name (e.g., ∗.co.uk).

3) Basic constraints: The basicConstraints extension defines
the role of certificates (via cA) and the maximum number
of subordinate CA certificates on a certificate chain (via
pathLenConstraint). According to RFC 5280 and CA/B
BR, it is crucial for certificates to indicate their role
between leaf and CA honestly. As for pathLenConstraint,
leaf certificates must not include it, and meanwhile, CA
certificates should follow particular formats for the value.
According to the rules, we generate tests by varying the
role of certificates and crafting diverse ways of role or path
length value violating the true nature of the certificate.

C. Certificate Identity

Checking certificate identity is a critical step of certificate
validation. Specifically, we need to deal with two things: figure
out the correct identity of certificates, and verify whether the
identity of a leaf certificate matches the website’s identity.

The X.509 certificate provides two fields for certificate iden-
tity, namely Subject field and Subject Alternative Name exten-
sion. Especially, SAN enables a single certificate to associate
with multiple domain names. RFC 5280 states that the identity

may be carried in either Subject or Subject Alternative Name
extension. Nonetheless, CA/B BR requires the Subject name
must be contained in the Subject Alternative Name extension. In
our opinion, there are many pitfalls around Subject, and thus we
adopt CA/B BR’s policy.

For Subject-only condition, we generate tests where the Sub-
ject field is different from the website’s identity. Similarly, we
generate tests for Subject Alternative Name-included condition
and make Subject field be contained in Subject Alternative Name.
In both conditions, certificate identity differs from the website’s
identity in that particular characters (e.g., wildcard, dot, etc.)
are utilized improperly in different ways. Apart from that, we
consider the condition where Subject field does not belong to
the Subject Alternative Name extension. To generate tests, we
choose to make either Subject or Subject Alternative Name not
the same as the website’s identity and then vary the value of
the field similarly to previous conditions. The types of values
in the certificate identity that are covered include fully-qualified
domain name, wildcard domain name, IP address, and so forth.
To distinguish from the previous category, here we use the
wildcard character legally in the domain name.

D. Certificate Chain Validity

Certificate validation aims to verify the chain of trust starting
from the trusted root certificates, via subordinate CA certificates,
to a leaf certificate. Besides, the validity of every certificate
along with the chain, such as the signature, period of validity,
revocation status, and key usage, entails to be checked as well.
To emphasize the importance of the key usage and certificate
revocation, we prepare test cases for them especially, as shown
in the rest of this section. Meanwhile, since certificate chain
validation is a complicated process, we only present the most
enticing parts and ignore some details (e.g., signature validation,
long period of validity, and self-signed certificate) for simplicity.

1) Name chaining: It requires the Subject field of a certificate
is the same as the Issuer field in the following certificate
on the certificate chain. Any inconsistency occurred will
break the trust of a chain. We generate tests by differenti-
ating the above two fields and adding a few special charac-
ters (e.g., white space) that may be processed improperly
by browsers, to Subject or Issuer fields.

2) Path length constraints: The pathLenConstraint is an at-
tribute of basicConstraints extension and is used to de-
fine the maximum number of subordinate CA certificates
following a CA certificate in the certificate chain. We
generate tests that violate path length constraints of either
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the root certificate or intermediate CA certificates. We
design tests by varying certificate chain length, changing
the position of rule violation, and manipulating the value
of pathLenConstraint.

3) Name Constraints:Name Constraints extension is lever-
aged to place restrictions regarding subject namespace on
any certificates sitting below that CA in the certificate
chain, in the way of Excluded Subtree (a.k.a. blacklist),
Permitted Subtree (a.k.a. whitelist) or both of them. The
constraints may be enforced to Subject field or the Subject
Alternative Name extension. The name forms, defined
by RFC 5280, include directoryName for Subject field
and dNSName, iPAddress, and so forth for Subject Al-
ternative Name extension. From root certificate down to
leaf certificate, if the subject name is not allowed ac-
cording to Name Constraints, the certificate chain gets
invalid.

We generate test cases for Subject and Subject Alternative
Name respectively to evaluate the matching of the subject name
against name constraints in conditions including whitelist-only,
blacklist-only, as well as both of them are specified. Moreover,
we vary our tests for different subject forms (e.g., IP address,
fully-qualified domain name). For the domain name in particular,
we complicate the checking by involving characters such as
the wildcard, dot, etc. In addition, we include tests where the
name constraints of either root CA or intermediate CA are
violated, assuming that they are handled differently. For Subject
Alternative Name, we also consider the case where multiple
subject names are declared in Subject Alternative Name, and
there exist conflicts in three ways. First, some of the subject
names are not allowed by name constraints. Second, subject
names are both permitted and excluded in the name constraints
of one certificate (conflicts within a certificate). Third, subject
names are both permitted and excluded in the name constraints
of different CA certificates (conflicts between two certificates).

E. Key Usage

Depending on the role (e.g., CA or leaf), the public keys
of certificates are used for diverse scopes and purposes. Two
extensions, namely Key Usage and Extended Key Usage, are
provided to regulate the usage of certificates. For example, a CA
certificate can set keyUsage extension to keyCertSign to allow
using the key to sign other certificates when a leaf certificate is
not permitted to do so. Both Key Usage and Extended Key Usage
extensions should follow some requirements made by CA/B BR
and RFC 5280 to avoid making the capability of the certificate
exaggerated. Specifically, particular values must be used in the
key usage fields, but some others are forbidden, depending on
the role of a certificate. Therefore, we first generate test cases
by manipulating the values of the two extensions so that they
violate those requirements. There are also extra restrictions for
ensuring the consistency between Key Usage and Extended Key
Usage. We then generate test cases to represent inconsistent
purposes between Key Usage and Extended Key Usage in both
leaf certificates and CA certificates, respectively.

F. Certificate Revocation

Attackers may abuse certificates maliciously to jeopardize
users and website owners. For example, miscreants can compro-
mise certificate authorities and then issue whatever certificates
they want. Therefore, it is necessary to terminate the validity of
these certificates before they expire. RFC 5280 and 6960 illus-
trate two approaches to query certificate revocation information,
namely Certificate Revocation List (CRL) and Online Certificate
Status Protocol (OCSP). In addition, several factors may impact
whether or not to check the revocation status, such as the position
of the revoked certificate on the certificate chain and certificate
chain length. Therefore, we generate tests for both CRL and
OCSP by varying the certificate chain length, manipulating the
role of the revoked certificate between CA and leaf, and changing
the certificate status to be revoked.

IV. AUTOMATIC TESTING OF CERTIFICATE VALIDATION

In this section, we present our methodology of testing
certificate validation on a variety of popular mobile and
desktop browsers. We first introduce how we obtain the
dataset of browsers evaluated in this paper. Then, we demon-
strate an automatic testing pipeline aiming to capture certifi-
cate validation flaws, regardless of the discrepancies across
browsers.

A. Browser Dataset

To obtain an in-depth understanding regarding security issues
of certificate validation, we select a list of the most popular
mobile and desktop browsers, such as Chrome, Firefox, and
Edge, as shown in Table II. This list is a representative one
as it contains browsers using a variety of rendering engines and
certificate validation mechanisms as well. Another consideration
is that it is meaningful to compare mobile browsers with their
desktop counterparts. Certificate validation means an additional
non-negligible time overhead for browsers while loading web
pages. Therefore, we would like to know whether and to what
extent the security of certificate validation is sacrificed to im-
prove a browser’s performance.

Next, we discuss the main steps we took to collect the browser
dataset. For mobile browsers, given the browser list obtained
from Google Play Store, we try to collect the latest version of
them. However, we need to roll back to earlier versions for a
few browsers due to the following reason. According to prior
work [27], the internal of mobile browsers can be determined by
operating systems. Therefore, we are interested in observing the
certificate validation mechanism of mobile browsers on different
operating systems. To this end, we need to ensure that the latest
browser versions are compatible with the evaluated operating
systems.

Moreover, it is required by our automated testing framework
to make tested browsers trust root certificates within the trust
store of operating systems. As Firefox browser (100M+ installs)
leverages a custom trust store, we decide to test Firefox beta
instead, whose trust store is configurable. Finally, for desktop
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Fig. 2. Automatic testing pipeline for evaluating certificate validation of mobile browsers, which contains four steps: 1) Test certificate generation: produces and
verifies test certificates, 2) Test initialization: configures testing environments, 3) Automated testing: performs testing, and 4) Vulnerability detection: identifies
security flaws and analyzes results.

TABLE II
OVERVIEW OF SELECTED MOBILE AND DESKTOP BROWSERS

browsers, we choose the five most popular ones whose mobile
counterparts are also in our browser list.

B. Automatic Testing Pipeline

To evaluate many non-cooperative browsers against hundreds
of certificate-validation test cases, we have to cope with two chal-
lenges mainly. First, how to transform test cases, as described in
Section III, to some generic formats that could be easily tested by
browsers? Second, how to enable us to perform automated and
continued testing at scale for a variety of browsers, combined
with diverse operating systems?

To tackle these challenges, we design and implement an au-
tomatic testing pipeline aiming to identify certificate validation
flaws in different browsers, which consists of Test Certificate
Generation, Test Initialization, Automated Testing, and Vulner-
ability Detection. As testing desktop browsers is straightforward
by leveraging browser automation tools like Selenium [28],
we especially propose a generic testing framework for mobile
browsers. We will illustrate the details of the automatic testing
pipeline (shown in Fig. 2) using mobile browsers as the example.
Test Certificate Generation. It aims to transform test cases,
described in Section III, to the outputs with a generic, browser-
agnostic format, which are websites combined with test certifi-
cates. To this end, we propose a semi-automatic approach to
generate test certificates and associated URLs from pre-defined
templates. Our insight is that test cases deviate from valid certifi-
cates slightly by violating particular rules of standards. There-
fore, the correctness of browsers for handling test certificates
indicates whether browsers are secure or vulnerable. To fulfill
the transformation, we first craft a few certificate templates.
From there, we develop a certificate-generating system, which
is used to produce various chains of test certificates by tweaking
parameters and manipulating certificate templates. According
to the requirements of test cases, the system generates chains
of certificates, each of which is made by the root certificate,
intermediate CA certificates, and a leaf certificate associated
with a specific website. As a result, we output chains of certifi-
cates with corresponding URLs, which are later deployed for
evaluating browsers.

Next, we develop a baseline certificate validation tool, which
can perform certificate validation against test certificates similar
to browsers. The baseline tool is based on the certificate vali-
dation process defined in RFC 5280 [18], and we add detailed
security checks according to the test suite. We also refer to the
source code of a few popular browsers like Chrome and Firefox.
As expected, our baseline tool can reject all of the test certificates
(explained further in Section V).

Test Initialization. It prepares the testing environment so that
the testing framework can evaluate mobile browsers against test
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certificates as simple as visiting organic websites. The prepa-
rations include certificate configuration and testing platform
configuration. The goal of certificate configuration is to deploy
test certificates. For this purpose, we configure an Nginx web
server to deploy test websites and certificates. As for testing plat-
form configuration, we need to ensure that the testing platform
(i.e., mobile devices) can satisfy all the requirements for the
evaluation. More specifically, we first configure the Dnsmasq
tool on mobile devices to forward requests towards domains
associated with test certificates to the Nginx web server. Second,
we configure mobile devices to install the root certificates that
are the origin of trust for issuing all test certificates.

Automated Testing. It triggers automated testing framework
to launch certificate validation testing on mobile browsers. It is
cumbersome to manually evaluate thirty browsers on two mobile
devices against a total of 157 test certificates. Hence, we design
and implement an automated testing framework that is capable
of automatically driving all tested browsers to visit test websites
and then collecting necessary data. In this work, we evaluate
mobile browsers on two Android OS versions, namely Android
10 and 6. The reason is that Android 10 is the most popular OS
version at the time of testing, and we chose the next popular
OS version–Android 6, to keep a gap between the two tested OS
versions.

The automated testing framework controls mobile devices
through Android Debug Bridge (ADB). Specifically, it first
utilizes ADB commands to automatically install browsers (i.e.,
APK files) on mobile devices and mimic a sequence of user
inputs (e.g., tap, swipe) to get through welcome pages. Then, the
installed browsers are ready to be fed with URLs and perform
testing. During the testing, the framework automatically pro-
vides simulated user interactions (e.g., tap, swipe) to rendered
web pages and captures the screenshot of presented pages, as
well as recording logs from the web server. Finally, the testing
framework will instruct mobile devices to uninstall the tested
browser and repeat the above steps for the next browser. Note that
we spent a lot of effort to make the automated testing framework
generic.

Vulnerability Detection. It analyzes collected web server logs
and device screenshots, then automatically decides verdict re-
sults, which reflect decisions made by browsers. The verdict
results are from either one of the following:

1) Accept: means a certificate is considered valid and trusted
for establishing the communication channel.

2) Warning: means a certificate is invalid, but the problem
is moderate. It lets users decide whether to proceed by
displaying a warning page.

3) Reject: means a certificate is not trusted anyway, thus
website visiting is stopped.

It is easy to know whether certificates are accepted or not, ei-
ther by analyzing web server logs or presented web page content.
However, it is hard to distinguish reject from the warning, in that
they both show some browser-owned pages to stop users from
directly accessing websites. In addition, extracting meaningful
clues from presented pages is quite challenging even for human
beings, not to mention that a general solution is needed for all
browsers and diverse types of reject and warning reasons.

To address the problem, we try to collect browser-controlled
error pages triggered by a wide range of reasons and provided by
diverse browsers, leveraging our test websites. By extracting text
clues from those pages using optical character recognition and
comparing the differences, we generate an ample set of keywords
for diverse types of error pages. Luckily, this process only needs
to be done once, and the manual efforts are minimal. Given
the collected data and pre-defined keywords, we apply both
optical character recognition analysis and server log analysis
to determine verdict results. Finally, we take further analysis
over results to obtain more findings.

V. ANALYSIS OF CERTIFICATE VALIDATION PROBLEMS

In our work, we evaluated 30 mobile browsers, five desktop
browsers, and a baseline tool against 157 test certificates. Each
mobile browser is evaluated on two different operating systems
(Android 6 and 10). As a result, we performed a total of 10,362
tests automatically, each of which is labeled as either Accept,
Warning, or Reject, indicating the decision made towards
a test certificate. In the following, we will report our evaluation
results in detail.

A. General Results

We compare evaluation results of certificate validation be-
tween baseline, mobile browsers, and desktop browsers in Fig. 3.
Specifically, we count the total number of tests resulting in
Accept, Warning, and Reject respectively. Unlike the
baseline, there is not any browser that can Reject all test
certificates. Moreover, Reject test certificates is not prevalent,
most test certificates lead toWarning pages instead. Our results
demonstrate that certificate validation flaws are indeed severe
and inconsistent across different browsers.

We tested the desktop counterparts of five high-profile mobile
browsers and compared the mobile and desktop side by side. It
is shown that the security of certificate validation is impaired
on mobile platforms. For example, average mobile browsers
Accept more test certificates than desktop ones (about 20.9%
for desktop browsers, and about 33.2% and 27.2% for Android 6
and 10 individually). In addition, average desktop browsersRe-
ject significantly more test certificates than mobile browsers
(37.6% for desktop versus 5.4% and 9% for Android 6 and 10).
However, mobile browsers frequently display Warning pages
and allow users to decide whether to trust a certificate. It is
worth noting that Warning is not enough to prevent users from
MITM attacks. According to previous work [29], up to 64.6%
certificate warnings of Chrome on Android are clicked through,
thereby potentially exposing users to MITM attacks. Hence,
browser vendors should reconsider the decision of favoring
Warning over Reject carefully.

Next, we found certificate validation of mobile browsers
becomes slightly more secure due to system updates when we
compared the same version of all browsers on two different
operating systems. In other words, an average mobile browser
elevates the decision of at least 13 test certificates to be Warn-
ing or Reject on Android 10 than Android 6. Last, certificate
validation implementations vary a lot across mobile browsers,
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Fig. 3. Comparison of evaluation results for a baseline and diverse browsers (sorted by popularity) by varying underlying platforms and OSes.

Fig. 4. Comparison of results between mobile (bars) and desktop (points) browsers. C1, C2, C3, C4, and C5 stand for different test categories, namely certificate
field value, certificate identity, certificate chain validity, key usage, and certificate revocation.

whereas desktop browsers (except Firefox) show identical
results. On Android 10, relatively more secure browsers (e.g.,
Opera Mini) Reject about 131 test certificates, whereas the
most vulnerable browsers (e.g., APUS Browser)Accept nearly
all test certificates.

B. Mobile versus Desktop Browsers

We found average desktop browsers Accept fewer in-
valid certificates than mobile browsers, indicating that desktop
browsers care more about the security of certificate validation.
We assume the reasons could be that either desktop devices are
more powerful or the developers of mobile browsers tend to ne-
glect security. Certificate validation entails extra time and band-
width overhead for browsers while loading web pages. Desktop
computers have enough resources (such as stable networks,
abundant computing power, and so forth) for their applica-
tions, including web browsers. Therefore, desktop browsers can
presumably leverage the ample resources to embed more secure
and complete certificate validation algorithms than mobile ones.

In Fig. 4, we compare certificate validation results between
five high-profile mobile browsers (on Android 10) and their
desktop counterparts. We show the percentage of test certificates
detected as Accept, Warning, and Reject in each test
category, as described in Section III. To highlight the difference,
we use bars and points to represent mobile and desktop browsers,
respectively. Later, we define security levels – from low to high
– as vulnerable (Accept), moderate (Warning), and secure
(Reject). Security improvement indicates the security level
changes from low to high, whereas security regression changes
from high to low.

Counter-intuitively, Firefox is the only browser that improves
(or at least not downgrades) security on the desktop for all
categories. However, security improvements are still significant,
and security regressions are minimal for other browsers. Firefox
on desktop decides to Reject a significant amount of test
certificates that used to be Accept or Warning on mobile
browsers. Especially, Firefox for desktop is the only browser
that correctly supports the checking of revocation status for
leaf certificates (via OCSP) and Reject revoked certificates.
That demonstrates how certificate validation gets improved on
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Fig. 5. Total number of tests with security improvement (positive on y-axis) or regression (negative on y-axis) for mobile browsers on Android 10 than Android
6; note that Opera Mini is placed separately due to scale difference.

desktop browsers prominently. Except for Firefox, other
browsers have similar change patterns in that they make both se-
curity improvements and regressions. Common security down-
grades include: using extensions but not configuring a correct
certificate version (C1); violating name chaining or maximum
period of validity (C3); failing to detect the inconsistencies
between keyUsage and extendedKeyUsage (C4).

As for security improvements, desktop browsers tend to Re-
ject more test certificates other than Warning, indicating
that they are more confident about certificate validation results
and not concerned about breaking websites. For example, desk-
top browsers (except Firefox) improve by Reject certificates
declaring incorrect basic constraints, not satisfying path length
constraints or name constraints, mistakenly allowing leaf certifi-
cates to sign certificates, and so on. Although desktop browsers
make drastic improvements, a large number of flaws are still not
eliminated fundamentally by both mobile and desktop browsers.

C. The Impact of Mobile Systems

Mobile browsers can integrate different “cores” depending on
the operating system. Hence, even the same browser may exhibit
differences in certificate validation from one OS to another. It is
truly a problem for users who have difficulty updating the OS to
the latest one on the market (e.g., due to hardware limitations).
The reason is that these people presumably encounter certificate
validation mechanisms with more vulnerabilities. As a result, it
is necessary to understand how certificate validation is related
to the OSes or mobile devices.

To this end, we tested mobile browsers on two mobile OSes
(namely Android 6 and 10), which represent popular older and
newer OSes. The security levels are defined the same as in the
previous section. Security improvement means the security level
changes from low to high, whereas security regression changes
from high to low. As shown in Fig. 5, we demonstrate the total
of tests with security improvement and security regression (for
Android 10 over 6). We found all browsers, except Firefox, show
some changes. The change patterns are attributed mainly to four
groups and reveal the similarities within the group. The first one

contains eleven browsers (e.g., Phoenix), the second is eight
browsers (e.g., Chrome), the third is four browsers (e.g., UC
Mini), and the last one is three browsers (e.g., APUS).

Ten browsers exhibit security regressions, but the number of
cases is negligible (at most two tests per browser). By investigat-
ing further, we found one popular security regression is due to a
mistake in handling an incorrect value of Key Usage; another one
is because of the conflict between Key Usage and Extended Key
Usage. It discloses that it is still confusing for browser vendors
to determine certificate validation policies for dealing with the
usage of keys.

Mobile browsers generally become more secure in certificate
validation on newer OSes. Opera Mini achieves the most signifi-
cant security improvements (131 test cases) among all browsers.
Average mobile browsers make about 13 security improvements
if all browsers are considered and nine when Opera Mini is
excluded. Among five test categories, mobile browsers alto-
gether make 222 (56.2%) security improvements in Certificate
chain validity, 76 (19.2%) in Certificate identity, 54 (13.7%)
in Key usage, 43 (10.9%) in Certificate field value, and 0 in
Certificate revocation. For the specific security improvements,
we obtain a few observations. First, Certificate chain validity,
which involves a sequence of certificates, occupies more than
half of all security improvements, meaning that the validation
of certificate chains relies heavily on the computing power of
underlying platforms. Second, mobile browsers achieve secu-
rity improvements in approximately 13.9% of the tests in Key
usage category. Therefore, it is valuable to interview browser
developers to characterize the root causes of many uncertainties
in regulating key usage. Last, certificate revocation checking is
supported poorly by even the most high-profile browsers, and it
probably results from the extra time and bandwidth cost.

D. Details of Non-Compliance With Standards

In this section, we discuss in detail the non-compliance of
popular mobile browsers with standards (e.g., RFC 5280, CA/B
BR). Since we tested the latest version of the most popular
mobile browsers on the recent mobile OS, the non-compliances
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TABLE III
GROUPING OF TEST RESULTS FOR BROWSERS ON ANDROID 10

of certificate validation appearing on Android 10 represent the
most common flaws within mobile browsers nowadays.

In Table III, we demonstrate different groups of mobile
browsers that exhibit identical results. We discovered that mobile
browsers Acceptmore than 25 (16%) test certificates, even for
relatively secure groups (G1-G3). Some mobile browsers (G10)
even blindly Accept nearly all test certificates. Moreover, it is
rare for mobile browsers (only G3) to Reject test certificates,
although Warning is not the best choice. In the following, we
will discuss non-compliances in each test category individually,
according to Table IV.

Certificate Field Value. We carefully choose certificate fields
that may lead to security issues once format or value violations
exist. First, we found G7 (Firefox) Accept test certificates
containing extensions, regardless of a certificate’s version (even
though it is not a valid one). Second, all browsers (except G7)
do not check the correctness of both two attributes of basic-
Constraints in leaf certificates. Apart from that, G9 and G10
also fail to check Subject Alternative Name extension against
the restrictions for using the wildcard character.

Certificate Identity. We identify rule violations of hostname
verification, which checks the consistency between the identity
of a certificate and the website that presents that certificate. Espe-
cially, browsers have to determine the correct certificate identity
from multiple candidate fields. Again, G9 and G10 can not detect
problems in all test cases. However, most groups (G1-G6) only
make two types of mistakes, though these flaws occur in all tested
browsers. The first one is allowing private IP addresses in either
Subject Common Name or Subject Alternative Name to serve as
the identity. Another flaw is that certificates whose SCN is not
contained in SAN result in being Accept-ed, which violates
the CA/B BR. Finally, G7-G10 incorrectly Accept certificates
with inconsistent identities in the hostname and SCN field, such

as encountering matching failures while involving the public IP
address, wildcard character, and so on).

Certificate Chain Validity. We identify flaws that may cause
a broken chain of trust to be permitted, including violations
of validity on a specific certificate and incapable of enforcing
constraints exerted by a certificate over the next ones on the
chain. Since issuing certificates with a long period of validity
will increase the risk of being compromised, CA/B BR mandates
a policy of cutting the maximum period of validity according to
when a certificate is issued. Nonetheless, we found that G7, G9,
and G10 do not enforce the rules at all. Instead, G3-G6 and G8
partially enforce the rules but wronglyAccept certificates with
a long period of validity and are issued recently (after September
2020).

In addition, all browsers (except G7) do not respect partic-
ular pathLenConstraint and NameConstraints exerted by root
certificates, thereby loosing the control over intemediate cer-
tificates. Also, they wrongly Accept certificates violating
specific NameConstraints for Subject Alternative Name while
G7-G10 wrongly Accept certificates violating specific Name-
Constraints for Subject Common Name. G8 frequently violates
the rules for checking NameConstraints against SCN. For exam-
ple, the PermittedSubtree of NameConstraints includes “com”
(supposed to allow test.com), however certificates whose SCN is
“∗.test.com” get Accept-ed mistakenly. Key Usage. We iden-
tify flaws where browsers wrongly Accept certificates even
though the actual purposes of keys may not follow the values in
keyUsage or extendedKeyUsage extensions. First, all browsers
Accept CA certificates and leaf certificates that violate the
rules for keyUsage. For example, leaf certificates are allowed to
support keyCertSign enabling them to issue certificates, which
violates the standard. Similarly, all browsers (except G7) Ac-
cept CA and leaf certificates that violate the rules for extend-
edKeyUsage. For example, CA and leaf certificates are allowed
to specify any value in extendedKeyUsage. Finally, all browsers
do notReject certificates presenting particular inconsistencies
between keyUsage and extendedKeyUsage.

Certificate Revocation. We identify flaws where revoked cer-
tificates are still considered valid due to not checking certificate
status. Surprisingly, we found all mobile browsers do not query
certificate status information via OCSP or CRL links specified in
the certificate. Considering some browsers may leverage custom
CRL, we undertake an extra experiment where we choose 35
revoked certificates randomly from crt.sh (a platform showing
the details of certificates) and evaluate how browsers deal with
them. It turns out that only Firefox can detect 14 revoked certifi-
cates. This result aligns with prior work [30], which discovered
Chrome’s CRLSet can only cover 0.35% of all revocations in
their dataset.

E. Discussions

Analysis of Findings. Invalid certificates, once abused by
adversaries but not detected, may lead users to various types
of attacks (e.g., MITM) and punch holes over secure com-
munication channels. In general, we found all popular mobile
browsers, each of which has been installed millions to billions
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TABLE IV
DETAILED EXPLANATIONS OF COMMON NON-COMPLIANCES WITH STANDARDS

of times, contain some vulnerabilities and fail to identify invalid
certificates. In addition, browsers show significant disparities
across different platforms (i.e., desktop versus mobile), dif-
ferent Android OS versions, and diverse types of browsers.
Due to the differences, a browser may embed with a differ-
ent browser engine, thereby bringing about discrepancies in
the root certificate store, trust paths, and certificate validation
mechanism. In addition, we discovered that mobile browsers
tend to hand over the responsibility of handling invalid cer-
tificates to users by showing “warning” pages. We suspect it
is because the network condition of mobile devices is usually
poor and can hinder the procedures like certificate revocation
checks.

The identified flaws in the certificate validation logic of popu-
lar browsers have significant security impacts since we focus on
security-related certificate-validation policy violations, which
are more likely to appear in the real world. Instead, two lines of
prior work also tried to generate test cases for evaluating cer-
tificate validation mechanisms. They are either limited to some
ad-hoc tests [23], [24] or stop at very simple security-related pol-
icy violations (e.g., accepting X.509 version 1 certificate) [12],
[26] by mutating fields or altering chain sizes. In this work, we
dived into the specific values (e.g., corner cases) of (extension)
fields in the X.509 certificate and explored complex situations,
such as the interplay between multiple (extension) fields, besides
the meaningful test cases presented in prior work. Interestingly,
Kumar et al. reported in [8] that the error within most mis-issued
certificates in 2017 is Subject CN not from SAN, which is also a
prevalent vulnerability in our evaluation results. We shared a few
other types of vulnerabilities with [8] as well. It indicates that
our method is effective in identifying security-related certificate
validation flaws, which are probably leveraged by real-world
certificates. However, users can hardly perceive such attacks
because they require no user interaction (e.g., clicking buttons),
and hence the potential risks are catastrophic.

Ethical Disclosure. The invalid certificates in our test suite
can help reveal the security flaws of browsers and point out
how attackers can bypass the certificate validation mechanism.
That is most of our invalid certificates, once crafted or obtained
from certificate authorities by accident, can increase the risks
of MITM attacks (like spoofing attacks and information theft).
Nonetheless, they are not the vulnerabilities used by attackers

directly to intercept end-to-end communications in the wild.
Therefore, they can not be weaponized to automatically com-
promise web browsers or hack into end-to-end communications
on a large scale.

Limitations & Suggestions. Although we tried to conduct a
systematic and comprehensive analysis of certificate validation
mechanisms, our work still contains some limitations. First, we
tested popular mobile browsers on Android devices instead of
other mobile platforms like iOS. Since we found the browser
engine of many mobile browsers is correlated with their un-
derlying OSes, it would be interesting to see which platform is
generally more secure in terms of certificate validation. Next,
the certificate validation for EV or OV certificates is stricter
than standard certificates, realized through the source code of
reputable browsers and relevant standards. However, we only
generated standard certificates since it entails a strict reviewing
process to obtain EV or OV certificates, meaning that we have to
provide some documents to prove we physically own a company
or organization. Therefore, we leave it to our future work.
Finally, we made it our future work to systematically investigate
browsers’ implementations of certificate transparency-related
policies.

To enhance the security of certificate validation, we have the
following suggestions: 1) Due to the complexity and difficulty
of certificate validation, we will suggest browser developers
separate high-level policies from the implementation of cer-
tificate validation so that identifying flaws in the certificate
validation can become easier than before; 2) Since browsers rely
on the network to fetch data for completing certificate validation,
we would recommend browser vendors to optimize network
requests or preload some data.

VI. ANALYSIS OF REAL-WORLD CERTIFICATES

Although we tried to compile a comprehensive test suite,
we still wonder whether test certificates can reflect problematic
certificates in the wild. Moreover, we would like to know how
popular mobile browsers react to these certificates. To this end,
we evaluated certificates in the wild, collected from the Alexa
top websites by randomly choosing 10K from the top, middle,
and bottom of the list, respectively. In this section, we discuss
our main findings.
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Fig. 6. Distribution of problematic certificates.

A. Problematic Certificates

From sampled websites, we utilize our baseline tool, Chrome,
and Firefox (on Windows) to capture problematic certificates.
In total, we collected 46 problematic certificates and classified
them into four categories as the following:

1) Expired Certificate: the certificate presents when it ex-
ceeds (before or after) the period of validity.

2) Hostname Mismatch: the hostname of a web page does
not match with the identity of the certificate.

3) Self-signed Certificate: the certificate is not signed by a
trusted authority but an unknown entity or the owner itself.

4) Revoked Certificate: the certificate has been revoked due
to some security concerns.

All these problems, found to be included in our test suite,
are extremely harmful and may cause MITM attacks, spoofing
attacks, and so forth. For example, the private keys of the
self-signed certificate and expired certificate are at a higher risk
of being disclosed, thereby causing hijacked communication
channels. It further enables stealthy eavesdropping or modifying
of private user information (e.g., bank accounts) and security-
sensitive operations.

Fig. 6 shows the distribution of certificate problems across
different website rankings. We found our baseline, the same
as Firefox, detects the most number of real-world problematic
certificates. The primary deficiency of Chrome is due to not
detecting revoked certificates. Moreover, the Chrome browser
adopts different policies for revoked certificates on Windows
and macOS. For instance, users can access mexicolibre.mx
(confirmed to have a revoked certificate by crt.sh) on Windows
normally but are blocked on macOS.

We also analyze the relationship between website ranking
and the total of problematic certificates. There is not enough
evidence to prove that problematic certificates are more common
for lower-ranked websites. However, we obtain a few interesting
observations. First, renewing expired certificates is similarly
challenging for websites across all rankings. Second, it is less
common for users to encounter hostname mismatch issues if
websites are high-ranked. Apart from ranking, we investigated
website content associated with problematic certificates and
found websites with problems, such as self-signed certificates
or hostname mismatch, are more vulnerable. It is because the

Fig. 7. Comparison between baseline and diverse mobile browsers for prob-
lematic certificate detection.

websites provide user accounts that are sensitive and may cause
severe consequences once compromised.

B. Behaviors of Mobile Browsers

In this section, we present the results of evaluating the be-
havior of mobile browsers towards problematic certificates.
Specifically, we evaluated the top 30 mobile browsers against
the above 46 websites associated with problematic certificates.
We found some websites either fixed their problems or became
inaccessible anymore. As a result, 31 problematic certificates
are still workable in the best case.

Fig. 7 demonstrates the total of problematic websites detected
by different mobile browsers. Our baseline is proved to out-
perform all mobile browsers in terms of both the types and
the total number of problematic certificates detected. Unlike
our baseline, none of the mobile browsers can detect revoked
certificates successfully. In addition, similar to the results in
Table III, mobile browsers (e.g., APUS, Via), which fail to detect
the majority of test certificates, still have difficulty in identifying
the real-world problematic certificate. However, the rest of the
mobile browsers show almost identical results. Interestingly,
UC Turbo and UC Mini (previously in the same group) show
significantly different results. According to further investigation,
we found the results of UC Mini are impacted by enabling or
disabling the data saving mode. Only by enabling the data saving
mode, UC Mini is able to use proxy servers to achieve vital
security mechanisms of browsers (e.g., certificate validation).

VII. RELATED WORK

A. Certificate Security

The problem of abusing digital certificates to launch man-in-
the-middle attacks has gained much attention over the years [3],
[4], [5], [6], [7], [8], [17], [31]. Multiple approaches have been
presented to understand the deficiencies of certificate validation
in SSL/TLS implementations. Brubaker et al. [12] proposed a
methodology to identify flaws in SSL/TLS implementations by
differential testing on synthetic certificates generated by using
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corpus of fields and values from the real certificate. In [26], Chen
et al. generated certificates by mutating certificates through a
chain mutator and a certificate mutator. Both papers concentrated
on producing as diverse certificates as possible to improve
coverage instead of revealing security-related issues. Chau et
al. [15] applied symbolic execution to test certificate chain
validation code of small SSL/TLS libraries. Delignat et al. [32]
analyzed the compliance of CAs with the guidelines made by
the CA/Browser Forum over time. The abstraction of the CA/B
guideline document is coarse-grained where [32] extracted only
the keywords for the requirements in the guideline, whereas we
understood the semantic meaning of it. Sivakorn et al. [16]
paid special attention to hostname verification and presented
a testing framework based on automata learning algorithms.
Assuming that flaws are absent in SSL/TLS libraries, He et
al. [13] checked the incorrect use of SSL/TLS APIs. However,
none of these projects generates test certificates by looking
at the noncompliance with related standards, not to mention
that the perspective from browsers is dismissed, which is the
motivation of our work. There are also related works cover-
ing other aspects of certificate validation logic, such as TLS
handshake protocols [14], [33], Android apps [34], [35], [36],
User Interface [37], and TLS Interception proxies [38], [39],
[40], [41]. In addition, as ensuring the security of SSL/TLS
implementations is extremely difficult, [42], [43], [44], [45], [46]
demonstrated different approaches for mitigating the threats.

In recent years, there raises a concern regarding certificate
revocation. In 2015, Liu et al. [30] conducted a measurement
study for the checking of certificate revocation on different
combinations of browsers and operating systems. They found
the revocation check is very poorly supported. Compared to our
work, [30] mainly focused on desktop browsers but not a diverse
set of popular mobile browsers as we did. Also, it did not evaluate
other certificate validation problems than certificate revocation.
Apart from the efforts [47], [48] to overcome the shortcomings
of traditional revocation status checking mechanisms, certificate
transparency has recently been promoted to be effective in
detecting malicious certificates. Nevertheless, Stark et al. [49]
found the support of certificate transparency in browsers has
been delayed.

B. Certificate Validation of Browsers

In 2009, Wazan et al. [23] were the first to evaluate browsers’
behavior while processing certificates and demonstrated they
are inconsistent, probably due to the ambiguity of standards.
In 2017, the authors performed another evaluation by updating
the test suite and adding a few more browsers. Then, they
presented security improvements and regressions in [24]. The
first difference between our work and [23], [24] is that they only
cover several manually crafted test cases. Instead, we compiled
a more updated and comprehensive test suite, which covers
broad categories of invalid certificates, based on a systematic
investigation of relevant standards and other resources. Second,
our work is the first to concentrate on mobile browsers and to
perform automated testing on dozens of the most popular mobile
browsers. It allows us to reveal many mobile-specific issues.

As certificate validation mechanism is complex, Larisch et
al. [50] proposed an approach to disentangle X.509 certifi-
cate validation policy (high-level rules) from the mechanism
(low-level implementation code that enforces policies) and de-
veloped a pluggable framework called Hammurabi to replace
the certificate validation mechanism of existing browsers. In
addition, by leveraging the imputation techniques, developers
can also discover differences between two browsers’ certificate
validation policies, thereby identifying security bugs.

VIII. CONCLUSION

Certificate validation plays a crucial role in establishing se-
cure HTTPS connections. Due to the limitations of mobile
platforms, it is challenging for mobile browsers to implement
complete and secure certificate validation mechanisms. How-
ever, little attention has been paid to this area. To fill the gap, we
performed a systematic and large-scale study for the certificate
validation of mobile browsers. We first compiled a compre-
hensive test suite covering five aspects of certificate validation.
Then, we developed an automated testing pipeline and leveraged
it to evaluate thirty mobile browsers and five desktop browsers
against a total of 157 test cases.

The evaluation reveals that desktop browsers are more se-
cure than mobile browsers since they prefer rejecting invalid
certificates instead of showing warning pages. Interestingly,
mobile browsers can achieve significant security improvements
by updating OSes. Our findings are confirmed via the analysis of
problematic certificates on real websites. To our best knowledge,
we are the first to systematically evaluate certificate validation
mechanisms of mobile browsers. We highlight mobile browsers
are as much important, if not more, than desktop browsers and
other SSL/TLS implementations.
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