
TriggerScope: Towards Detecting Logic Bombs
in Android Applications

Yanick Fratantonio∗, Antonio Bianchi∗, William Robertson†, Engin Kirda†, Christopher Kruegel∗, Giovanni Vigna∗
∗UC Santa Barbara

{yanick,antoniob,chris,vigna}@cs.ucsb.edu
†Northeastern University

{wkr,ek}@ccs.neu.edu

Abstract—Android is the most popular mobile platform today,
and it is also the mobile operating system that is most heavily
targeted by malware. Existing static analyses are effective in
detecting the presence of most malicious code and unwanted
information flows. However, certain types of malice are very dif-
ficult to capture explicitly by modeling permission sets, suspicious
API calls, or unwanted information flows.

One important type of such malice is malicious application
logic, where a program (often subtly) modifies its outputs or per-
forms actions that violate the expectations of the user. Malicious
application logic is very hard to identify without a specification of
the “normal,” expected functionality of the application. We refer
to malicious application logic that is executed, or triggered, only
under certain (often narrow) circumstances as a logic bomb. This
is a powerful mechanism that is commonly employed by targeted
malware, often used as part of APTs and state-sponsored attacks:
in fact, in this scenario, the malware is designed to target specific
victims and to only activate under certain circumstances.

In this paper, we make a first step towards detecting logic
bombs. In particular, we propose trigger analysis, a new static
analysis technique that seeks to automatically identify triggers
in Android applications. Our analysis combines symbolic execu-
tion, path predicate reconstruction and minimization, and inter-
procedural control-dependency analysis to enable the precise
detection and characterization of triggers, and it overcomes
several limitations of existing approaches.

We implemented a prototype of our analysis, called TRIG-
GERSCOPE, and we evaluated it over a large corpus of 9,582
benign apps from the Google Play Store and a set of trigger-
based malware, including the recently-discovered HackingTeam’s
RCSAndroid advanced malware. Our system is capable of
automatically identify several interesting time-, location-, and
SMS-related triggers, is affected by a low false positive rate
(0.38%), and it achieves 100% detection rate on the malware
set. We also show how existing approaches, specifically when
tasked to detect logic bombs, are affected by either a very high
false positive rate or false negative rate. Finally, we discuss the
logic bombs identified by our analysis, including two previously-
unknown backdoors in benign apps.

I. INTRODUCTION

Android is currently the most popular mobile platform. 78%

of all smartphones sold in Q1 2015 [39] were shipped with

Android installed, and the Google Play Store now hosts more

than two million applications [17]. Unfortunately, Android

has also become the most widely-attacked mobile platform;

according to a recent report, it is the target of 79% of known

mobile malware instances [59].

App store providers invest significant resources to protect

their users and keep their platforms clean from malicious

apps. To prevent malicious apps from entering the market

(and to detect malice in already-accepted applications), these

providers typically use a combination of automated program

analysis (e.g., Google Bouncer [41]) and manual app reviews.

These automated approaches leverage static and/or dynamic

code analysis techniques, and they aim to detect potentially-

malicious behaviors – e.g., exfiltrating personal private infor-

mation, stealing second-factor authentication codes, sending

text messages to premium numbers, or creating mobile bot-

nets. These techniques are similar in nature to the numer-

ous approaches to detecting Android malware proposed in

academia [29], [31], [40], [36], [64], [14], [18], [19], [32].

These approaches proved to be effective when detecting tra-
ditional malware [63], and recent reports show that the official

Google Play app store is reasonably free from malicious

applications [15].

Nonetheless, there are certain types of malice that are still

very difficult to capture explicitly by modeling permission

sets, suspicious API calls, or unwanted information flows

(i.e., all those features used by existing analysis approaches).

One important type of such malice is malicious application
logic. We consider a program to contain malicious application

logic when it (often subtly) modifies its outputs, providing

results that violate the expectations that a user can reasonably

have when interacting with this app. In particular, we refer to

malicious application logic that is executed, or triggered, only

under certain (often narrow) circumstances as a logic bomb.

As an example of a logic bomb, consider a navigation

application (similarly to Google Maps) that is meant to assist a

soldier in the battlefield when determining the shortest route to

a given location. As a legitimate part of its intended behavior,

this application would collect GPS-related information, send

the information over the network to the application’s back-

end for processing, retrieve the results, and display to the

user some helpful information (such as the route to follow).

Assume further that this app contains a functionality that

checks whether the current day is past a specific, hard-coded

date: If the current day is indeed past this date, the app subtly

queries the network back-end for a long route, and not for

the shortest one as the user would expect. Thus, after the

2016 IEEE Symposium on Security and Privacy

2375-1207/16 $31.00 © 2016 IEEE

DOI 10.1109/SP.2016.30

377

2016 IEEE Symposium on Security and Privacy

© 2016, Yanick Fratantonio. Under license to IEEE.

DOI 10.1109/SP.2016.30

377

1 public void f() {
2 Date now = new Date();
3 Date target = new Date(12,22,2016);
4 // 1) retrieve GPS coordinates;
5 ...
6 if (now.after(target)) {
7 // 2) query network back-end
8 // for a *long* route
9 g();

10 } else {
11 // 2) query network back-end
12 // for the *shortest* route
13 // (as expected)
14 h();
15 }
16 // 3) show computed route to user
17 ...
18 }

Figure 1: A possible implementation of a logic bomb.

hard-coded date, this application would provide misleading

information, and the results could seriously affect the well-

being of the user. Figure 1 shows a possible implementation

of this behavior.
While traditional malware rarely implements this kind of

stealthy behavior, these techniques are often used by targeted

malware employed by APT actors when executing targeted,

state-sponsored attacks. In fact, in this scenario, malware

is designed to target specific victims and to only activate

under certain circumstances. Unfortunately, targeted malware

are becoming more prevalent. As a clear example, in July

2015 the HackingTeam security company was victim of a

sophisticated attack [56], and all its internal resources and

personal communications got publicly leaked: This attack led

to the identification of RCSAndroid [60], one of the most

sophisticated malware sample for Android ever discovered.

This malware has the ability to leak the victim’s private con-

versations, GPS location, and device tracking information, but

it is also able to capture screenshots, collect information about

online accounts, and capture real-time voice calls. However,

these malicious behaviors are not manifested when the appli-

cation starts. Instead, to increase its stealthiness, RCSAndroid

waits for incoming SMS messages and checks whether these

messages are sent from specific senders and contain specific

commands. While this application was officially sold to law

enforcements agencies and governments, the HackingTeam

company has been accused by anti-surveillance campaigners

of collaborating with governments with poor human rights

records [57], and also in conducting targeted attacks against

activists [58]. In particular, RCSAndroid’s usage in the wild
is documented by several (now public) internal communica-

tions [7], [5], [6].
Another scenario where trigger-based malware poses a real

threat is related to the Android app store curated by the U.S.

Department of Defense [26], which collects applications to

assist officers and soldiers in the battlefield. The DoD market-

place features applications that are internally-developed but

also many applications developed by government contractors

and third parties, such as commercial entities. The current

solution to finding malicious application logic is manual audit,

often in combination with dynamic analysis. That is, to vet an

application, a human analyst executes the program in an in-

strumented environment and studies its behavior under various

inputs. In this model, the analyst’s own judgment and the app’s

description serve as the guidelines to help determine whether

the program functions as expected. Unfortunately, even this

costly (both in terms of time and labor) manual process does

not guarantee the identification of logic bombs, especially for

those cases where the source code is not available (e.g., Google

Maps).

Logic bombs are particularly insidious, since they can elude

static analysis efforts and are hard to detect for human analysts,

even when equipped with powerful dynamic analysis tools. In

fact, consider the example in Figure 1. When examining this

application, a static analysis system will not find any unusual

permission or unwanted API calls, or any clearly-malicious

action (in fact, invoking network-related APIs is perfectly

legitimate for a navigation app), thereby bypassing traditional

approaches such as [31], [18], [36], [64]. Also, all information

flows (e.g., location-related source flows to a network sink)

are expected, as they correspond to the description of the app

in the store, rendering ineffective the detection capabilities

provided by [19], [35]. Approaches based on dynamic analy-

sis [41], [29], [40], [53], [49], [55] are ineffective as well: since

the hardcoded date is set in the future, the time-related check

will not be satisfied when testing the app, and the malicious

functionality will thus not be executed. As another example,

an app could run its malicious behavior only when the user

is in a particular location. Unfortunately, these techniques are

actively being used to bypass automatic and manual vetting

systems [10], [1].

The key challenge is related to the fact that automatically

detecting malicious application logic is very hard without

taking into account the specific purpose and “normal” func-

tionality of an application, and, hence, it is out of reach

for most existing analysis tools. In fact, even those dynamic

analysis tools designed to increase the code coverage (e.g.,

approaches based on multipath execution and/or dynamic sym-

bolic execution [43], [22], [34], [8], [42], [61], [48]) would not

have access to enough information to discern whether the just-

executed functionality was malicious or not. At the very least,

these tools would require a very fine-grained specification of

the intended app behavior, something that is typically not

available.

In this paper, we make a first step towards the automatic

detection of logic bombs. Our work is based on the follow-

ing key observation: an aspect that, at least in principle, is

necessary for the implementation of a logic bomb is that

the malicious behavior is triggered only under very specific

circumstances. Thus, in this work we propose to detect logic

bombs by precisely analyzing and characterizing the checks
that guard a given behavior, and to give less importance to the

behavior itself. To this end, we developed a new static analysis

378378

technique, called trigger analysis, which combines traditional

program analysis techniques with novel elements used for

automatically and precisely identifying triggers. We (infor-

mally) define triggers as suspicious predicates (or checks)

over program inputs that guard the execution of potentially-

sensitive behavior, where a predicate is (intuitively) considered

as suspicious if it is satisfied only under very specific condi-

tions. In particular, we use static code analysis and symbolic

execution to first identify checks that operate on sensitive

input, and to then extract their precise semantics (i.e., which

inputs are used, what operations were performed on these

inputs, and what values are they compared against). We then

use path predicate reconstruction, path predicate minimization,

and predicate classification to identify interesting checks, and,

as a last step, the analysis performs inter-procedural control-

dependency analysis to determine whether a specific check

guards sensitive operations.

We propose to use trigger analysis for the identification of

logic bombs. However, of course, not every trigger (according

to our definition) is part of a logic bomb. As a result, the

fact that an app contains a trigger is typically not enough to

outright convict an application as being malicious. However,

we show in our experiments that a detection system that flags

all applications that contain an interesting trigger as malicious,

delivers excellent detection results for targeted malware, while

raising a very small number of false positives on benign apps

(outperforming existing malware detection systems that focus

on opportunistic malware). Our system also returns a series

of detailed information for each of the detected trigger, thus

going beyond the mere identification of each of them. This

greatly simplifies the work of a human analyst who has to

make the decision whether a trigger is acceptable or malicious.

Moreover, the output of our analysis can be also used as a

starting point to craft inputs for a dynamic analysis system to

exercise and vet the relevant behavior.

We have implemented our trigger analysis in a system called

TRIGGERSCOPE. Our analysis operates directly on Dalvik

bytecode, and it does not rely on access to source code. Our

current prototype handles a number of different program inputs

that have been traditionally used to activate malicious behav-

ior: time, location, and the content (and sender) of text mes-

sages (SMS). We have extensively evaluated TRIGGERSCOPE

over a large corpus of benign and malicious applications. Our

benign dataset is constituted by 9,582 Android applications

downloaded from the Google Play Store, while our malicious

dataset is constituted by several malicious apps that were either

developed by an independent DARPA Red Team organization

(developed with the aim of resembling state-sponsored mal-

ware) or real-world malware samples containing logic bombs,

including the HackingTeam’s RCSAndroid application.

Our experiments demonstrate the ability of our system to

precisely and efficiently detect triggered behavior in these

applications. In particular, TRIGGERSCOPE was able to au-

tomatically identify several interesting triggers, including two

previously-unknown backdoors in supposedly-benign apps,

and a variety of logic bombs in the malicious samples. TRIG-

GERSCOPE’s output also proved to be useful for constructing

proof-of-concepts that exercise the relevant behaviors. To

assess the precision of our tool, we performed manual analysis

(on more than 100 applications) and we compared our results

against the ground truth. TRIGGERSCOPE has a low false

positive rate of 0.38%, and we did not encounter any false

negative. Although we acknowledge that this evaluation does

not definitely exclude the possibility of false negatives in the

benign apps (see Section VI for a discussion about the limita-

tions of this work), we believe our results are an encouraging

step towards the detection of trigger-based behavior in Android

applications.

As the second part of our evaluation, we considered sev-

eral state-of-the-art Android malware detection tools, each

of which relies on a different approach. In particular, we

considered Kirin [31], which relies on permission-based signa-

tures, DroidAPIMiner [14], which relies on machine learning,

and FlowDroid [19], which relies on taint analysis. Our

experiments show that all these existing tools are not suitable

for the detection of logic bombs, as they either have a very

high false negative rate (78.57%) or a very high false positive

rate (69.23%). We show that TRIGGERSCOPE significantly

outperforms them.

To summarize, this paper makes the following contributions:

• We make a first step towards the automatic detection

of logic bombs in Android applications. To this end,

we introduce trigger analysis, a static program analysis

technique that discovers hidden triggers. Our analysis

combines both existing and novel analysis techniques:

symbolic execution (§III-A), block predicate extraction

(§III-B), path predicate reconstruction and minimiza-

tion (§III-C), predicate classification (§III-D), and inter-

procedural control-dependency analysis (§III-E).

• We developed a prototype, called TRIGGERSCOPE, and

we evaluated it over a large corpus of benign and

malicious Android applications. Our experiments show

that TRIGGERSCOPE is able to efficiently and effec-

tively identify previously-unknown, interesting triggers,

including two backdoors in benign apps and a variety

of logic bombs in the malicious samples. Our evaluation

also shows that TRIGGERSCOPE has a very low false

positive rate, and it outperforms several other state-of-

the-art analysis tools when detecting logic bombs.

• We show how TRIGGERSCOPE can effectively assist a

human analyst who aims to identify hidden logic bombs
in Android apps. In fact, TRIGGERSCOPE’s analysis

output includes rich details about the detected triggers,

and enables the quick verification of its findings through

proof-of-concepts that exercise the relevant behaviors. We

also empirically found that triggers are relatively rare in

benign apps, and their presence can therefore be used a

strong signal that motivates further scrutiny.

II. SYSTEM OVERVIEW

In the previous section, we informally introduced the notion

of triggers. In the following paragraphs, we first sharpen that

379379

Path Predicate Extraction
Symbolic Value Modeling

Path Predicate Classification

Android
APKs

Annotated
sCFG

Suspicious
Apps

Benign
Apps

Class Hierarchy
Analysis

Control
Flow Analysis

Symbolic Value
Modeling

Block Predicate
Extraction

Path Predicate
Recovery

Predicate
Minimization

Suspicious Predicate
Identification

Control Dependency
Identification

Figure 2: Overview of the components that comprise our trigger analysis. In the first phase, Android APKs are disassembled, and an Android-
specific forward symbolic execution is performed on the Dalvik bytecode to recover an sCFG annotated with block predicates and
abstract program states at all program points. In the second phase, full path predicates are recovered and checked whether they
represent potential triggers for malicious behavior.

definition to provide the reader with a better understanding of

our threat model. Then, we describe at a high level how our

system can find triggers in Android apps.

A. Trigger – A Definition

Before providing a definition of triggers, we first introduce

some relevant terminology. We define a predicate as an

abstract formula that represents a condition in a program: a

condition is introduced by a branch (such as an if statement)

and ensures that some program code is executed only when

the abstract formula (i.e., the predicate) evaluates to true.

Moreover, a predicate is said to be suspicious if, intuitively,

it represents a condition that is satisfied only under very

specific, narrow circumstances (Section III-D provides a more

concrete definition). We then define a functionality as a set

of basic blocks in a program. A functionality is said to be

sensitive if at least one of its basic blocks performs, directly

or indirectly (i.e., through a method call), a sensitive operation.

The definition of sensitivity can be specified through a user-

defined policy (Section III-E describes the concrete policy we

used for this paper). We now define a trigger as a suspicious

predicate that (directly or indirectly) controls the execution of

a sensitive functionality.

More formally, a trigger is a predicate p such that the

following property holds: isSuspicious(p) ∧ ∃ F :
(isSensitive(F) ∧ controlsExec(p, F)). The

isSuspicious(p) and isSensitive(F) properties are

satisfied if the predicate p is suspicious and the functionality F
is sensitive, respectively. The controlsExec(p, F) property

is satisfied if either one of the following two properties hold:

1) p directly controls the execution of F;1 2) ∃ F ′ such

that p directly controls the execution of F ′ ∧ “F ′ (intra-

or inter-procedurally) alters the value of a field (or object)

that is part of a predicate p ′” ∧ controlsExec(p ′, F).
For the interested reader, Figure 7 (in Appendix B) reports

the implementation (in pseudocode) of the function that

1In this paper, “directly controls” indicates that p is part of the intra-
procedural path predicate that controls the execution of F. All details are
explained in Section III-E

determines whether a given predicate matches our definition

of trigger.

Throughout this paper, we will discuss how TRIGGER-

SCOPE’s analysis steps play a key role in effectively detecting

triggers: in particular, we will show that isSuspicious
heavily relies on the information extracted by the symbolic

execution and predicate classification, while controlsExec
relies on the path reconstruction and minimization technique,

and on the control-dependency analysis.

B. Analysis Overview

At a high level, our trigger analysis for Android applications

proceeds in two phases, an overview of which is depicted in

Figure 2. In the first phase, Android APKs are unpacked and

subjected to forward static symbolic execution. For this, we

leverage a flow-, context-, and path-sensitive analysis that also

takes into consideration the Android application lifecycle and

interactions between Android application components. This

phase produces an annotated super control-flow graph (sCFG),

which consists of the inter-procedural CFG superimposed on

the intra-procedural CFGs for each method. The annotations

store all possible values (upper and lower bounds) for local and

field variables in the program, as well as detailed information

about how the objects relevant to our analysis are created and

modified.

The second phase takes this annotated graph as input, with

the goal of identifying all triggers contained in the program.

The first step of this phase is to recover the intra-procedural

path predicates associated with each basic block. A path

predicate for a basic block b is a predicate p such that if 1) the

execution reaches the entry block of the method containing b,

and 2) p is satisfied, then b will be necessarily executed. These

path predicates give us information about which conditions in

the program control the execution of which blocks. As the next

step, the analysis identifies all suspicious path predicates in the

program (this is possible thanks to the information extracted

during the symbolic execution step), and, for each of them,

it checks whether the predicate guards the execution of a

sensitive functionality: these predicates are exactly the ones

that match our definition of trigger.

380380

1.method public f()V
2 // Date now = new Date();
3 new-instance v0, Ljava/util/Date;
4 invoke-direct {v0}, \
5 Ljava/util/Date;-><init>()V
6

7 // Date target = new Date(12,22,2016);
8 new-instance v1, Ljava/util/Date;
9 const/16 v2, 0xc

10 const/16 v3, 0x16
11 const/16 v4, 0x7e0
12 invoke-direct {v1, v2, v3, v4}, \
13 Ljava/util/Date;-><init>(III)V
14

15 // if (now.after(target)) {...}
16 invoke-virtual {v0, v1}, \
17 Ljava/util/Date;-> \
18 after(Ljava/util/Date;)Z
19 move-result v2
20

21 // suspicious check!
22 if-eqz v2, :cond_0
23

24 // g();
25 invoke-virtual {p0}, LApp;->g()V
26 goto :goto_0
27

28 :cond_0
29 // h();
30 invoke-virtual {p0}, LApp;->h()V
31

32 :goto_0
33 return-void
34

35.end method

Figure 3: This figure shows the Dalvik bytecode representation of
the f function presented in Figure 1. The Java-equivalent
of each set of instructions is reported in the comments. This
example clearly shows how the semantics of the suspicious
check is lost. In fact, the check is translated into a simple
if-eqz bytecode instruction (line 22): both the type of
operation and its arguments are lost. TRIGGERSCOPE uses
symbolic execution to reconstruct the semantics of these
checks, to then perform a classification step.

In the remainder of this section, we provide an overview

of the main analysis steps, and discuss their role in the entire

analysis process.

Symbolic Execution. One of the key aspects of our analysis

is the capability to classify predicates (or checks). The main

challenge in doing so is related to the fact that the semantics
of each check is lost during the translation of the program

from Java source code to Dalvik bytecode. As an explanatory

example, consider again the snippet of code in Figure 1. As we

already discussed, for a human analyst, it is straightforward to

recognize that the check contained in function f is suspicious.

However, at the bytecode level, the clearly-suspicious check in

the Java snippet (line 6) is translated into a if-eqz bytecode

instruction, which simply checks that the content of a register

is different from zero. Thus, the semantics of the check is not

easily-accessible anymore and must be reconstructed. Figure 3

shows the Dalvik bytecode corresponding to the example in

Figure 1.

To overcome this limitation, our approach relies on symbolic

execution and it precisely models several Java and Android

APIs. This allows our approach to annotate each object

referenced in a check, with precise information about its

type, (symbolic) value, and the operations that influence it.

As we discuss in details in Section III-A, these annotations

allow the analysis to generate expression trees that contain all

the necessary information to reconstruct the semantics of the

check and to consequently classify it.

Block Predicate Extraction. As we mentioned, one of the

main steps of our analysis is to reconstruct the path predicates

associated with each basic block of the program. To do so, the

analysis first extracts simple block predicates – i.e., symbolic

formulas over the abstract program state that must be satisfied

in order for a basic block to be executed. In particular, during

the symbolic execution step, the system annotates the CFG

with information about the low-level conditions that need to

be satisfied in order to reach each block, assuming that the

execution already reached one of its predecessors. Moreover,

these conditions are also annotated with information about the

semantics of the objects involved in the check. This step is

discussed in detail in Section III-B.

Path Predicate Recovery and Minimization. In the next

phase, the analysis combines together the simple block predi-

cates, to then recover the path predicates for each basic block

in the program. To this end, the analysis performs a backwards

traversal of the CFG, it recovers the full path predicates, and it

then minimizes them to remove redundant terms, which would

otherwise introduce false dependencies. The details of this step

are discussed in Section III-C.

Predicate Classification. While the aforementioned tech-

niques greatly reduce the candidate set of path predicates

that must be considered, this alone is not enough to precisely

identify suspicious predicates. As an example, consider a game

that implements a recurring check that triggers an action every

few seconds. Although it depends on time, this behavior is

perfectly legitimate. For this reason, our analysis considers

multiple characteristics of a predicate in order to classify
it. This not only includes whether the predicate involves

values labeled as originating from a potential trigger input,

but also the type of the comparison performed. Note that this

is technically possible only because the system has access to

the information extracted during the symbolic execution step.

The full details of this step are presented in Section III-D.

Control-Dependency Analysis. As a final step, our system

checks whether a suspicious predicate guards any sensitive

operations. In particular, the system recursively checks, for

each block guarded by a suspicious predicate, whether this

block (intra- or inter-procedurally) invokes a sensitive method,

or whether it modifies a field or an object that are later involved

in a predicate that, in turn, guards the execution of a sensitive

operation. This step allows us to detect explicit as well as

implicit control dependencies, and it significantly improves the

precision over systems that simply look for any kind of checks

381381

������������	
�����

��� ����������
Figure 4: Example of an expression tree.

against sensitive values, in terms of both false positives and

false negatives. The details about this step are provided in

Section III-E.

III. ANALYSIS STEPS

While the previous section provided a high-level overview

of the analysis steps, in this section we elaborate upon the

details.

A. Symbolic Execution

The analysis begins by first unpacking the Android APK and

extracting the DEX file that contains the application’s Dalvik

bytecode, the encoded application manifest, and encoded re-

sources such as string values and GUI layouts. The bytecode

is then lifted into a custom intermediate representation (IR)

that all our analysis passes operate on. The analysis then

performs a class hierarchy analysis and control flow analysis

over the IR to construct the intra- and inter-procedural control-

flow graphs. After these preliminary steps, the application’s

bytecode is subjected to forward static symbolic execution,

applying a flow-, path-, and context-sensitive analysis, where

the particular context used ranges from full insensitivity to

2Type1Heap object sensitivity [51], which is known to provide

a good trade-off between precision and performance when

performing symbolic execution on object-based programs.

Android Framework Modeling. A notable feature of our

analysis that bears mention is its awareness of i) the An-

droid application lifecycle, ii) control flows that traverse the

Android application framework due to the pervasive use of

asynchronous callbacks used in Android applications, and

iii) inter-component communication using the Android intent

framework. The precise modeling of these aspects has been

widely studied in the literature and, for our design and

implementation, we mainly reused ideas from previous works.

In particular, we follow the approach described in FlowDroid

to model Android application components’ lifecycle [19]; we

integrate EdgeMiner’s results to model the control flow trans-

fers through the Android framework [24]; and we reused ideas

presented in Epicc [45] to precisely model inter-component

communications among the applications components.

Symbolic Values Modeling. Our symbolic execution engine

models the sets of possible values that local and field lo-

cations can contain. In particular, the analysis focuses on

integer, string, time, location, and SMS-related objects, and

it records operations performed over concrete and symbolic

values in these classes. For example, the analysis faithfully

models symbolic string values produced and manipulated by

many important classes (e.g., String, StringBuffer,

StringBuilder, and related classes) and their respective

methods (e.g., append, substring, and similar APIs).
Moreover, our system models symbolic integer values resulting

from APIs such as equals, startswith, and contains,

which are particularly important when detecting suspicious

checks on String-based objects (such as the body and the

sender retrieved from the SmsMessage object). The accurate

modeling of String objects is also useful to precisely model

Intents and Bundles objects (in essence, a key-value

store).

Similarly, our prototype also models time-related objects.

For example, time values can be introduced by construction

from a constant, in which case the analysis computes the

corresponding concrete value. Values representing the current
time are also specially handled by modeling the Android APIs

known to return such values (which are represented by the

#now tag in the examples mentioned in this paper). Our

system also annotates time-related objects with special tags to

encode which time component is stored in a given object. For

example, an application can invoke the Date.getMonth()
method to access the month component of a given time object,

or the Date.getSeconds() method to access the seconds.

In this case, our analysis annotates the return value of these

methods invocations with the special tags #now/#month
and #now/#seconds. All other components are similarly

modeled. This information can be useful, for example, to

determine how narrow is the condition represented by a given

time-related check.

Note also that it is not sufficient to simply record time values

representing the current time as a singular “now” value, as

the notion of “current time” monotonically increases during

program execution. Therefore, in addition to recording that

a time object corresponds to the current time at the point

where it is returned from the Android framework, the analysis

additionally annotates such value with an integer identifier

that is incremented for each new current time value observed

during symbolic execution. This additional information is used

to reconstruct the semantics of a given check (e.g., hard-coded

vs. recurring check) more precisely.

In addition, our analysis also models symbolic location-

and SMS-related values and operations. Sources of location-

related values include invocation of Android APIs related to

the GPS and cellular radio devices, operations on Location
objects, and transformations on raw integer and double values

extracted from Location objects. Our analysis also keeps

track whether a given Location object represents the current
location (in which case the value is annotated with the special

#here tag), and, when an application accesses a specific lo-

cation component, such as longitude and latitude, our analysis

encodes this information with the special tags #longitude
and #latitude.

Finally, sources of SMS-related values are modeled sim-

ilarly, and include operations performed on SmsMessage
objects, such as createFromPdu, getMessageBody,

and getOriginatingAddress, to which our analysis

associates, respectively, the tags #sms, #sms/#body, and

#sms/#sender.

382382

f

b0

b1

b2 b3

b4

q

g() h()
p ⋀ q ¬p ⋀ q

(p ⋀ q) ⋁ (¬p ⋀ q) = q

b5

Figure 5: Path predicate reconstruction from block predicates.

Expression Trees. During the symbolic execution step, each

symbolic object is also annotated with an expression tree that

encodes the operations that influence its value. As an example,

for the code snippet in Figure 1, our system would annotate the

object involved in the check with the expression tree depicted

in Figure 4, whose text representation is “(#now after
Date(2016/12/22)).” As we will show, these annotations

contain all the necessary information to reconstruct the seman-

tics of checks that operate on these inputs (and later classify

them). Of course, to avoid performance issues, we keep track

of precise information only for objects that are relevant to our

analysis.

B. Block Predicate Extraction
We already mentioned how, during the symbolic execution

step, the sCFG is also annotated with simple block predicates.

To better explain this step, consider, once again, the program

snippet in Figure 1 and its schematic representation in Fig-

ure 5. The analyzer would first recover the block predicate p
as a path condition introduced by b1, and it would annotate

the b1 → b2 edge (where b2 is the block that contains the

invocation of method g) with predicate p, representing that,

once the execution reaches b1, b2 is executed if and only if p
holds. For this example, our system would determine that p is

a comparison of the value of an object x against the constant

zero. The expression tree of x (i.e., Figure 4) is then retrieved,

and the predicate p is determined to be “(!= (#now after
Date(2016/12/22)) 0).” Similarly, the b1 → b3 edge

(where b3 is the block that contains the invocation of method

h) would be annotated with the predicate ¬p.

C. Path Predicate Recovery and Minimization
In the following step, simple block predicates are combined

together to recover, for each basic block, the full intra-

procedural path predicate. Given the block predicates for each

basic block, path predicate recovery is conceptually straight-

forward. For each block, the analysis performs a backwards

traversal of the enclosing method’s CFG and builds a complex

Boolean formula that represents all paths from the current

block to the entry point of the method. Predicates for se-

quences of basic blocks are combined using conjunction (i.e.,

logical AND), while blocks with multiple predecessors (due

to branch joins) take the disjunction (i.e., logical OR) of the

corresponding incoming path predicates. These predicates not

only capture the control-dependency relation between blocks,

but also precisely encode the condition that must be satisfied

for a block to be executed.

Note that, without any further steps, this simple path pred-

icate reconstruction algorithm might produce path predicates

that contain redundant terms. These terms could, if not re-

moved, result in a large number of blocks with false depen-

dencies on values derived from trigger inputs. For instance,

if a basic block is only executed when a certain condition

evaluates to true over a value derived from a trigger input, then

the path predicate recovery algorithm will correctly identify

that the basic block depends on that trigger input. But, it will

also erroneously state that successor blocks – including blocks

executed after a join with the else path – depend on the trigger

input.

To illustrate, consider once again the graph shown in

Figure 5, extracted from the trigger example introduced in

Figure 1. After the analysis has computed block predicates

over the entire sCFG, the path predicate from block b0 to b2 –

where the incoming path predicate to f is q – is represented by

the conjunction p∧q. Since p involves symbolic time values,

blocks b2 and b3 have a control dependency on a time-based

input. However, the path predicate associated with the join

of the two branches, represented by b4, would result in the

following expression: (p∧q)∨(¬p∧q). This will also be the

path predicate associated with the exit from f, represented by

b5. Note how this path predicate has a dependency on a time-

based input (through the predicate p), even if the execution of

the basic block b5 is clearly not guarded by any time-related

check.

For this reason, after path predicates are recovered for each

basic block, the analysis minimizes each path predicate. This

is accomplished by recursively simplifying the full formulas

for each basic block (using standard Boolean laws such as

the distributive law) until no further simplifications can be

performed. To conclude our example, the minimization of

the path predicate associated with b5 would result in the

expression (p∧ q)∨ (¬p∧ q) = (p∨ ¬p)∧ q = q, which,

as expected, does not contain a spurious dependency on time

input. We note that minimization of Boolean formulas is NP-

hard in the general case. However, we found this technique

to be fast in practice in our system. Finally, to compute path

predicates for those cases that include loops, we make use of

the techniques described in [33].

383383

D. Predicate Classification
Once the minimized path predicates have been recovered,

the analysis proceeds to classify these path predicates accord-

ing to the semantics of the comparison performed on potential

trigger inputs. To this end, the analysis checks the type of

comparison performed (e.g., =,<,�,>,�) as well as the

types of the operands used in the comparison (e.g., whether

a value is a constant, purely symbolic, or a special symbolic

value such as the current timestamp, the current location, or

an incoming SMS).
Intuitively, a check (predicate) is considered as suspicious

if it encodes a narrow condition. In fact, these are the types

of checks used by malicious applications that, for example,

are programmed to mount an attack only when the user is at

a very specific location (e.g., a soldier in a war zone).
In our current implementation, a check is flagged as sus-

picious according to the following policy: If a predicate is

semantically equivalent to one (or more) ordering compari-

son(s) between a current time value and a constant, then the

predicate is labeled as suspicious. A similar criterion is used

for location values. That is, if a predicate is equivalent to a

bounds check on symbolic values derived from an Android

location object, then the predicate is labeled as suspicious.

We apply a similar policy for SMS objects as well. Our

current implementation flags as suspicious any functionality

that attempts to match hard-coded patterns against the body

(or sender) of an incoming SMS.
Clearly, this is not the only possible valid definition of

suspiciousness. In fact, in certain scenarios, recurring checks

that, for example, trigger the execution of a given functionality

only once every month could be considered suspicious as

well. We believe that our observation that predicates encoding

narrow conditions deserve special attention is generic, and it is

independent from how such narrow checks are implemented.

Moreover, our analysis framework extracts all the relevant

information about path predicates that makes the detection of

these different kinds of checks possible.
Additionally, we implemented a few post-filter steps. These

are useful to filter out checks that match our definition of

suspiciousness but that are clearly benign. For example, we

empirically found that several applications check the value of

a field (that might contain a timestamp) against the constant

0 or -1: in effect, the application is just performing a “Is

this field already set with a valid timestamp?” type of check.

Similarly, for the location domain, we found cases where

location objects were compared against the constant value 0 –

in effect, the application performs a null reference check. We

also found that a similar kind of sanity check is performed on

strings representing the body of an SMS. In particular, some

applications check whether the length of the SMS’s body and

sender is greater than 0. As the 0 and -1 values do not represent

a valid (or interesting) absolute time or location, and as all

valid SMS have a non-empty body, we consider these checks

to be benign, and, therefore, our analysis does not flag them

as suspicious. We note that these post-filter steps are safe (i.e.,
they do not filter potentially-suspicious checks out) and that,

as we will discuss in Section V, they only affect a very limited

number of applications.

E. Control-Dependency Analysis

The final step of our analysis consists in determining

whether a control dependency exists between predicates iden-

tified as suspicious in the prior step and basic blocks that

contain invocations of sensitive Android framework methods.

This is accomplished using a forward traversal of the sCFG,

starting from each basic block that is guarded by a suspicious

path predicate. For each of these blocks, if that block invokes

a sensitive API method, then the path leading to it is labeled

as a suspicious triggered behavior.

Furthermore, our control-dependency analysis is inter-

procedural, and it also propagates suspicious predicates

through field locations or object definitions. That is, if a block

guarded by a suspicious predicate updates a field or sets an

object, subsequent blocks (potentially contained in different

methods) that are guarded by a check on that field (or object)

are added to the set of suspicious blocks to check. A similar

propagation is performed over flows through the Android

framework due to callback registrations and invocations, as

well as over intent-based inter-component flows. This allows

us to detect (implicit) control dependencies that would evade
simpler static analysis approaches.

Returning to the time-based trigger example in Figure 1 and

its schematic representation in Figure 5, our system would

consider b2 and b3 as blocks to be checked for sensitive

operations. If the analysis finds that method g (or h) can

directly or indirectly invoke a sensitive operation, then that

behavior would be classified by our analysis as a suspicious

triggered behavior.

For this work, we compiled a list of potentially-sensitive

operations by considering all Android APIs protected by a per-

mission (we used, as a starting point, the results of PScout [20]

and SuSi [47]), and by augmenting it with operations that

involve the filesystem (this list can be simply modified through

a configuration file). As the reader can notice, our definition of

sensitive is very conservative: in fact, the vast majority of the

operations considered as such are not even security-relevant.

As shown in the evaluation section, even with this conservative

definition of sensitiveness, our approach is affected by a very

low false positives rate, the reason being that we focus on

characterizing the check that guards a given behavior, and
not on the guarded behavior per se. It is also worth noting

that if existing approaches would adopt a similar definition of

sensitiveness, they would all be affected by an unacceptable

rate of false positives.

IV. IMPLEMENTATION DETAILS

We implemented our approach in a tool called TRIGGER-

SCOPE. The initial parsing of the bytecode uses the libdex
library from the AOSP project [3]. Then, the bytecode is

lifted into an intermediate representation (IR) suitable for per-

forming symbolic execution. Our symbolic execution engine

models the semantics of all individual Dalvik virtual machine

384384

instructions over an abstract representation of program states,

including the current program counter, abstract store, and

local environment. Thus, TRIGGERSCOPE is a pure static

symbolic execution engine for Dalvik bytecode, and it is

completely independent from the Android framework itself.

TRIGGERSCOPE is mostly written in C++, and consists of

18.6K SLOC.
Our prototype faithfully models all Dalvik bytecode instruc-

tions and propagates the taints (and the information about the

objects) accordingly. Moreover, as we described, our system

precisely models a number of relevant APIs. For these APIs,

the taints are propagated according to their model. For all other

APIs for which a model is not available, our system applies a

default tainting policy, which propagates all taints on method

arguments to the receiver object and to the returned value.

This conservative approach helps in case of a lookup in a

data structure like a map. Another problematic case is posed

when a tainted object is written to a file. To conservatively

handle this and similar cases, one would need to keep track

of, for example, file paths. When it is not possible to do so,

our current prototype errs on the side of false positives: if a

tainted value is written to the filesystem and no information

on the file path is available, the analysis will propagate such

taint upon subsequent file reads.
From a conceptual point of view, these design choices would

lead to more imprecision, which, as everything is handled

conservatively, would directly translate to over-tainting and

a high number of false positives. However, we empirically

found that this is not the case in practice. In fact, as we show

in the evaluation section, our analysis is quite precise in terms

of detecting suspicious triggered behaviors. Intuitively, this is

possible as time-, location-, and SMS-related functionality is

often well-isolated and self-contained, and even such aggres-

sive policies do not affect the overall precision of our analysis.
Another important aspect is related to keeping track of

constant values. In fact, determining whether an object (in-

dependently from its representation) encodes a constant value

is critical for our classification steps. Unfortunately, in the

general case it is not possible to record the exact value for

each constant. For this reason, when such information is

not available, our implementation falls back to a basic taint

propagation system, which can label a symbolic object as

constant.
Developing a symbolic execution engine for Dalvik byte-

code is not novel, and for the design and implementation of

our prototype, we reused many of the ideas from existing

static analysis tools [13], [12], [19], [23], [36]. However, none

of these frameworks has been designed to perform symbolic

execution directly on Dalvik bytecode and, therefore, we were

not able to reuse their implementation. Our approach also

relies on detailed CFG annotations (described throughout the

paper) as well as on precise models of symbolic values, which

other approaches do not provide.

V. EVALUATION

In this section, we evaluate TRIGGERSCOPE’s ability to

effectively and efficiently identify suspicious time-, location-,

and SMS-based logic bombs. We first describe the data sets we

used for the experiments. Next, we evaluate the performance

aspect, we discuss the results of our trigger analysis, and we

perform an evaluation of the accuracy of our analysis. We then

compare our system’s accuracy against the accuracy achieved

by three existing state-of-the-art tools, namely Kirin [31],

DroidAPIMiner [14], and FlowDroid [19], and we discuss

why they are not adequate for the automatic detection of logic

bombs. We conclude by discussing case studies of a number of

interesting triggers found by TRIGGERSCOPE, including two

previously-unknown backdoors in benign apps, and a variety

of logic bombs in the malicious samples.

A. Data Sets

For this work, we built a dataset of applications that include

both benign and malware samples relevant to our analysis. This

section describes how we obtained these two datasets.

Benign Applications. Since the current prototype focuses on

the detection of suspicious time-, location-, and SMS-based

triggers, we selected applications from the Google Play Store

that were known to use time-, location-, and SMS-related

APIs. To this end, we built three different sets: we selected

5,803 applications that are known to make use of time-related

APIs, 4,135 applications that invoke location-related APIs, and

1,400 applications that have the capability to receive SMS.

In total, these three sets contain 9,582 unique applications

(some make use of a combination of time-, location-, and

SMS-related functionality). These applications were selected

among a total of 21,747 (free) applications obtained from a

previous crawl of the market. These applications were crawled

without focusing on any specific selection criteria, and they

span various app categories, include well-known frameworks,

and contain, on average, hundreds of methods.

We built the first two data sets by statically checking all apps

from the crawl for the use of a predefined set of Android time-

and location-related APIs. The third data set included all apps

that require the android.permission.RECEIVE_SMS
Android permission, which is necessary for an app to receive
and process incoming SMS messages.

Malicious Applications. Our dataset of malicious applications

is constituted by 14 applications that are relevant to our anal-

ysis. These applications have been taken from several sources.

First, we considered 11 applications that were prepared by a

Red Team organization (an external, independent government

contractor) as part of a DARPA engagement related to the

analysis and identification of malicious Android applications.

These applications have been developed with the idea of

resembling state-sponsored malware and they are intentionally

designed to be as stealthy as possible, with the aim of

circumventing all existing automated malware analysis tools.

Additionally, we considered real-world malware samples that

contained a time-based logic bomb [54], SMS-based C&C

server [27], and the RCSAndroid malware sample written by

the HackingTeam security company [60].

385385

Domain # Apps # Apps With
Checks

Apps With Suspicious
Checks

Apps With Suspicious Triggered
Behavior

Apps After Post-Filter
Steps

Time 4,950 1,026 302 30 10

Location 3,430 137 71 23 8

SMS 1,138 223 89 64 17

Table I: This table summarizes how the different steps of our analysis are able to drastically reduce the number of false positives when
detecting triggered malware in a large set of benign applications obtained from the Google Play store.

Figure 6: CDF of the elapsed analysis time over the three test sets
of applications that use Android time, location, and SMS
APIs. In this experiment, 90% of the applications tested
were successfully analyzed for suspicious triggers in under
750 seconds.

B. Performance

Our experiments suggest that the performance of the TRIG-

GERSCOPE prototype is good enough to be able to scale its

analysis to thousands of real-world Android applications. In

particular, we analyzed the three data sets of applications from

the Google Play Store and set a timeout of one hour for each

instance. The tool was able to successfully analyze 4,950 out

of a total of 5,803 time-related applications, 3,430 out of a

total of 4,135 location-related applications, and 1,138 out of a

total of 1,400 SMS-related applications (9,313 unique samples

in total). The analysis of the remaining applications did not

complete before the timeout was reached. Figure 6 shows a

cumulative distribution of elapsed analysis times (for those

applications that were successfully analyzed), indicating how

many applications were analyzed within a given number of

seconds. In particular, we observe that 90% of the applications

we tested were completely analyzed for triggers in under

750 seconds. Moreover, on average, the analysis of each

of these applications required 219.21 seconds. This suggests

that performing trigger analysis over large sets of Android

applications, perhaps centrally at an app store, is feasible,

especially since the analysis can easily be horizontally scaled.

C. Trigger Analysis Results

In the 4,950 time-related applications, our tool identified

a total of 12,465 basic blocks whose execution is guarded

by a time-related constraint, contained in 1,026 different

applications (§III-B). After reconstructing the minimized path

predicates that guard each block (§III-C), TRIGGERSCOPE

performs a classification step for each of them (§III-D).

In this experiment, TRIGGERSCOPE detected 302 applica-

tions containing at least one suspicious time-related predicate.

Then, TRIGGERSCOPE performs control-dependency analysis

(§III-E) to determine whether these predicates guard the exe-

cution of any sensitive operations. This analysis step reduced

the number of applications to be manually inspected to 30

samples, a number that was further lowered to 10 by using

the post-filter steps (§III-D).

For what concerns the 3,430 applications containing

location-related APIs, TRIGGERSCOPE identified a total of

137 applications that cumulatively contain 869 location-related

predicates. TRIGGERSCOPE’s analysis steps were then able

to progressively reduce this set of applications to 71 (identi-

fication of suspicious checks), 23 (identification of sensitive

operations), and 8 (post-filter steps). Similarly, for the SMS

domain, the tool identified a cumulative total of 1,087 SMS-

related predicates in 223 applications (out of 1,138). Of these,

the analysis steps reduced this set to, respectively, 89 (iden-

tification of suspicious checks), 64 (identification of sensitive

operations), and 17 (post-filter steps) applications.

In total, TRIGGERSCOPE flagged 35 applications as suspi-
cious among the apps obtained from the Google Play Store.

Table I provides a summary of the results and underlines

how all the different analysis steps that constitute our trigger
analysis technique are relevant to reduce the number of flagged
applications.

For what concern the malicious applications, TRIGGER-

SCOPE was able to analyze and detect a trigger in all of them.

We discuss several insights in Sections V-F and V-G.

D. Accuracy Evaluation

We now discuss the precision of our analysis and we study

how the different analysis steps contribute to the end result.

We first computed the false positive ratio (FPR), which is

computed as the number of false alarms over the number

of the considered benign samples. We opted to evaluate our

system by using this metric (instead of others) since we

believe it answers the most relevant question when such

systems are deployed in real-world scenarios (where the vast

majority of the samples are benign): “Given a dataset of benign

386386

applications, how many false alerts does a system raise?” As

discussed in the previous section, TRIGGERSCOPE detected

35 benign applications (among the 9,313 samples successfully

analyzed) that contained at least one time-, location-, or SMS-

based trigger matching our definition of suspiciousness.
To evaluate the accuracy of our system, we manually

inspected all these applications, by using IDA Pro [37] to dis-

assemble the apps and, when possible, by using dex2jar [4],

JD-Gui [28], and JEB [52] to decompile them. We were

able to manually verify that TRIGGERSCOPE correctly and

precisely identified at least one interesting/suspicious trigger

in each of these applications. While most of these behaviors

appear to be legitimate, we identified two applications that

contain a backdoor-like functionality (these and other cases

are discussed in-depth in Section V-F). That being said, for the

sake of this evaluation, we consider all these 35 applications

as false positives (even if, depending from the context, the

two backdoors might be considered as true positive). Thus,

TRIGGERSCOPE has a false positive rate of 0.38%. Note

also that the false positive rate is even lower (0.16%) when

considering all the applications in our initial dataset (and not

only the ones that have access to input we check for triggers).
To assess whether TRIGGERSCOPE is affected by false

negatives, we manually inspected two sets of applications.

First, we inspected all 82 applications that our post-filter steps

discarded. In all cases, we were able to establish that the

discarded instances were not interesting. Second, we manually

inspected a random subset of 20 applications for which our

analysis did not identify any suspicious check. We spent about

10 minutes per application, and, once again, we did not find

any false negatives. We acknowledge that this evaluation does

not definitely exclude the possibility of false negatives (see

Section VI for a discussion about the limitations of this work),

but we believe our results are an encouraging step towards the

detection of trigger-based behavior in Android applications.
Table II provides a summary of the accuracy evaluation of

our analysis. The table also shows how the accuracy changes

when only a subset of TRIGGERSCOPE’s analysis steps are

used, clearly showing how all these steps actively contribute

to improve the overall accuracy of our approach.

E. Comparison with Existing Approaches
As part of our evaluation, we studied whether exist-

ing malware analysis tools (which proved to be very ef-

fective when detecting traditional malware) are suitable to

detect targeted malware (that leverages logic bombs) in

Android applications. We selected the most representative

works in the area of Android malware analysis: Kirin [31],

DroidAPIMiner [14], FlowDroid [19], AppContext [62],

DroidRanger [64], Drebin [18], and Apposcopy [32]. We

attempted to obtain or reproduce all of them, but we were able

to do so only for the first three tools: Kirin, DroidAPIMiner,

and FlowDroid. DroidRanger, Drebin, and Apposcopy are cur-

rently not open source. AppContext, instead, has recently been

released as open source. However, we encountered several
difficulties when attempting to use it, and we are currently

seeking help from the authors.

We believe these tools to be representative of very different

approaches to detect malicious and unwanted behavior in

Android apps. In fact, Kirin relies on permission analysis;

DroidAPIMiner applies machine learning based on the An-

droid APIs invoked by a given application; and FlowDroid

applies taint analysis to identify sensitive data flows (such as

privacy leaks). We acknowledge that FlowDroid is not meant

to be used for malware analysis, and this obviously affects

its performance. However, we included it in our evaluation

because we believe it is interesting to also consider an ap-

proach based on taint analysis, since it constitutes one of the

possibilities for detecting malicious/unwanted functionality.

The remainder of this section describes the details and the

results of our experiment.

Kirin. Kirin is an analysis tool that performs lightweight

malware detection by flagging an application as suspicious

according to a set of rules based on the requested permissions.

Kirin is open source [30], and we were easily able to reproduce

the analysis. Kirin relies on the specification of a rule set:

for this evaluation we considered the rules described in the

paper [31] and included in the source code. We used this tool

to analyze the applications in our dataset. Table III shows a

summary of the results. Kirin has a relatively low false positive

rate (6.38%), while it is affected by a very high false negative

rate (57.14%). These results are not surprising, since Kirin

relies on a very conservative set of rules based on permissions.

Thus, it is affected by a reasonable number of false positives, at

the price of missing many malicious behaviors, the underlying

issue being that a logic bomb can be implemented without

requesting highly-privileged permissions.

DroidAPIMiner. DroidAPIMiner is a malware detection tool

based on machine learning. In particular, this tool uses as

feature vector the set of Android APIs used by a given

application. DroidAPIMiner is not open source: nonetheless,

we were able to re-implement it based on the details provided

in the research paper and the help of the authors. For our

experiment, we used the k-nearest neighbors algorithm, since

the authors reported it to be the most effective algorithm

when detecting malware. We performed this experiment with

multiple values of k (1, 3, and 5), we trained the classifier with

our entire dataset, and we evaluated it by using leave-one-out

cross-validation. On the one hand, the tool does not raise any

false positive; on the other hand, it is affected by a very high

false negative rate (78.57%), making this approach not reliable.

These results are due to the fact that this approach would

flag an application as malicious only if the dataset contains

a malicious application that invokes very similar APIs. To

make things even more difficult, it is very challenging (if not

impossible) to obtain a comprehensive dataset of applications

containing logic bombs, which makes any approach based on

machine learning even less applicable when used to detect this

category of malicious applications.

FlowDroid. FlowDroid is a state-of-the-art static analysis

tool that aims at detecting sensitive privacy leaks in An-

droid applications. Clearly, this tool has not been designed

387387

Enabled Analysis Steps True
Positives

False
Positives

True
Negatives

False
Negatives

False
Positive

Rate

False
Negative

Rate

Predicate Detection 14 1,386 7,927 0 14.88% 0%

Suspicious Predicate Analysis
(in addition to the previous step)

14 462 8,851 0 4.96% 0%

Control-Dependency Analysis
(in addition to the previous steps)

14 117 9,196 0 1.26% 0%

TRIGGERSCOPE

(all analysis steps)
14 35 9,278 0 0.38% 0%

Table II: The table summarises the accuracy results of TRIGGERSCOPE. The total number of applications considered is 9,327, of which
9,313 benign and 14 malicious. This table also shows the results that would be obtained when only a subset of TRIGGERSCOPE’s
analysis steps is enabled.

Existing Analysis Tool # Benign
Apps

Malware
Apps

True
Positives

False
Positives

True
Negatives

False
Negatives

False
Positive

Rate

False
Negative

Rate

Kirin 9,309 14 6 594 8,715 8 6.38% 57.14%

DroidAPIMiner 9,313 14 3 0 9,313 11 0% 78.57%

FlowDroid 9,084 9 7 6,289 2,795 2 69.23% 22.22%

TRIGGERSCOPE 9,313 14 14 35 9,278 0 0.38% 0%

Table III: This table compares TRIGGERSCOPE’s accuracy against the accuracy achieved by three existing, state-of-the-art analysis tools
when tasked to detect logic bombs. The column “Benign Apps” and “Malware Apps” indicate the number of benign and malicious
applications for which the given tool was able to successfully complete the analysis. For fairness, the false positive and false
negative rates only consider those applications that were successfully analyzed.

to detect logic bombs. Nonetheless, we wanted to measure

the accuracy of these systems when used in our context.

For our experiment, we analyzed all the applications in our

dataset by setting a timeout of one hour, and we considered a

given application as malicious (or, more precisely, potentially-

suspicious) if FlowDroid identified at least one suspicious data

flow. Unsurprisingly, our results indicate that FlowDroid has a

relatively low false negative rate (22.22%), while it is affected

by a very high false positive rate (69.23%). Once again, these

results are not surprising: benign applications often contain

sensitive data flows, which directly lead to a high false positive

rate. On the other hand, the presence of a sensitive data flow

is not a necessary condition for the implementation of a logic

bomb: this observation is the root cause for false negatives.

Discussion. Table III summarizes the results of this experi-

ment. On the one hand, our results clearly show that existing

analysis approaches are not suitable for the detection of logic

bombs. In fact, analysis tools are either affected by a very

high false negative rate (Kirin and DroidAPIMiner) or by

a very high false positive rate (FlowDroid). On the other

hand, TRIGGERSCOPE provides an excellent trade-off between

false positives and false-negatives. Our analysis achieves better

results due to the key observation upon which our approach

is built: logic bombs are characterized by operations that are

executed only under very narrow circumstances, while the

actual, triggered behavior (encoded by the requested permis-

sions, APIs that are invoked, and data flows throughout the

application) plays a minor role.

F. Triggers in Benign Applications

This section provides insights related to the triggers that

TRIGGERSCOPE detected in the three sets of benign applica-

tions crawled from the Play Store. Since these applications are

benign, it is expected that the detected triggers are likely to

be legitimate. However, all the detected triggers proved to be

interesting, and worth of manual inspection. In particular, as

reported later in this section, we identified two applications

containing a SMS-based backdoor-like functionality. We also

note that the manual analysis was quite effective because

TRIGGERSCOPE returned precise information about the loca-

tion and type of the trigger, hence making the task of manual

vetting much simpler. The remainder of this section provides

an overview of our findings. The detailed analysis of each of

the detected triggers is reported in Appendix A, which we

invite the interested reader to consult for more information.

Time-related checks. One common case is that the application

contains a predicate that checks whether the current date

is greater than a specific constant. Such a check is usually

followed by a sensitive operation, such as a connection to the

Internet, or setting an “expired” flag in a file. Another benign

case of hard-coded checks is represented by those applications

created for specific events that offer a countdown and alert

the user whenever a specific date is reached. Another case is

that of applications that allow users to schedule the sending

of text messages at a future time. These classes of features

are usually implemented by means of several checks on date-

related objects – some of which, such as the minute value, are

against hard-coded values.

388388

Location-related checks. The number of applications that are

characterized by suspicious location-related checks is lower

than in the case of time-related checks. Intuitively, this makes

sense. In fact, it is easier to envision reasons why benign

applications might implement hard-coded time-related checks

(for example, to implement expiration functionality or checks

for updates) than to imagine cases where a benign application

contains operations that are triggered only when the current

location is within a specific area.
However, we did find a few applications that execute

specific behaviors only if the current location is within a

specific range. The prototype correctly identifies the suspicious

location predicate as the conjunction of path constraints on

the current latitude and longitude. In one example, when the

user’s location satisfies a series of constraints, the application

displays “Welcome to Yamagata Station!” to the user. We man-

ually verified that the range of valid latitudes and longitudes

indeed identifies the actual location of the Yamagata train

station in Japan. Note that while this specific trigger is clearly

benign, this kind of check is exactly what could be used to

implement a logic bomb to trigger a malicious behavior only

when a soldier is located in a given war zone.
SMS-related checks. TRIGGERSCOPE identified a num-

ber of suspicious/interesting SMS-related checks in 17

apps. In particular, TRIGGERSCOPE identified an applica-

tion, called MyRemotePhone [9], that allows users to re-

motely locate the device running the application itself.

For this app, our tool automatically identified a suspi-

cious SMS-related predicate that guards the execution of

location-related APIs. In particular, the tool reported the

following predicate: (&& (!= (#sms/#body contains
"MPS:") 0) (!= (#sms/#body contains "gps")
0)). In natural language, the predicate is satisfied when

the body of an SMS contains both the strings "MPS:" and

"gps". We then manually analyzed the application, and what

we found was surprising: upon reception of an SMS satisfying

the reported constraint (e.g., the string "MPS: gps"), the

application would automatically reply back with an SMS

containing the GPS coordinates of the device’s position, thus

leaking this sensitive information. To confirm this finding,

we installed and executed the application on a real device,

we sent an SMS containing the string "MPS: gps", and,

after a few seconds, we received an SMS containing the

message "Found at <latitude>, <longitude>!",

where <latitude> and <longitude> identified the exact

location of the device.
Another interesting application identified by our system

is called RemoteLock [11]. A user of this application has

the ability to remotely lock and unlock her device by send-

ing an SMS containing a keyword. This keyword is user-

defined, so it does not represent anything suspicious. However,

TRIGGERSCOPE identified the following predicate: "(!=
(#sms/#body equals "adfbdfgertefvgdfgrehgj
uiokhjgvbewruitkmbcvdfsgyhytdfsw")) 0)". In

natural language, the predicate is triggered when the body of

an incoming SMS contains a long, hard-coded string. Through

manual analysis, we quickly discovered that this suspicious

check is, in fact, used to implement a backdoor. To confirm

our finding, we installed and executed the application on a

real device, and we were able to unlock a locked phone just

by sending an SMS with the hard-coded string identified by

our system.

We found that the remaining apps make use of interesting

checks to implement a variety of functionality. For example,

we found a bank application that performs several checks on

all incoming SMS as part of its implementation of a two-

factor authentication scheme. Other applications implemented

a mechanism similar to the one implemented by the MyRe-

motePhone app, but more securely, for example by authenti-

cating the sender. Finally, other applications perform several

checks on the body of all incoming SMS to implement some

simple parsing routines, useful as a first step to implement

custom communication protocols between compatible apps.

G. Logic Bombs in Malicious Applications

In our final experiments, we tested TRIGGERSCOPE on

malicious samples. In a first experiment, we used our system

to analyze potentially-malicious applications developed by

a hostile DARPA Red Team organization. This data set is

constituted by 11 applications. TRIGGERSCOPE identified a

suspicious trigger in all of them. Five of them contained

time-related triggers, implemented by comparing the current

day, month, or year to hard-coded values; one application

contained a location-related trigger, where it first performs

several mathematical operations and conversions and then

compares the current location against a hard-coded position

using the Location.distanceBetween() method; the

remaining five application contained triggers based on the

content of SMS messages. When the trigger conditions are sat-

isfied, these applications would execute a variety of unwanted

behaviors, ranging from leaking sensitive information (e.g.,

user’s location) to changing a security-sensitive password to a

default, hard-coded one. For this data set, after the experiment

the DARPA Red Team provided us the ground truth for

each application (including details about all the triggers they

contained), and we were able to verify the absence of both

false positives and false negatives.

As a second experiment, we demonstrate how TRIGGER-

SCOPE is able to effectively identify trigger-based malicious

behavior in real-world malware. The first example we consid-

ered is (informally) called “Holy Colbert” [54], collected by

the Android Malware Genome Project [63]. For this sample,

TRIGGERSCOPE was able to automatically discover a time-

bomb: the app first retrieves the current date, converts it to a

string by means of the SimpleDateFormat Android API,

and it then compares the resulting string with the hard-coded

value "05212011". When this condition is satisfied, the

application starts to send spam text messages to the entire

contact list.

The second example we considered is a sample belonging to

the infamous Zitmo malware family [27]. Zitmo is well-known

for stealing mobile transaction numbers (mTANs) used to

389389

implement two-factor authentication in banking applications.

However, TRIGGERSCOPE was able to detect a different

malicious functionality: our system detected several suspicious

SMS-related checks. Upon manual inspection, we determine

that the detected checks are used to implement a SMS-based

bot-like C&C behavior. For the interested reader, we report

the decompiled version of the function implementing this

malicious functionality in Figure 8 in Appendix B.
The last real-world case-study we discuss is related to

HackingTeam, a security company known to write surveillance

software to assist law enforcement agencies and governments

around the world. As mentioned in the introduction, in July

2015 this company was subject of a sophisticated attack, and,

as a consequence, all its internal resources and personal com-

munications were publicly leaked. Among these resources, re-

searchers discovered the RCSAndroid [60] Android malware,

a very powerful malicious Android application that offers

remote control and spying capabilities. There are indications

that this malicious application has been used as part of targeted

attacks [57], [58], and it is thus relevant to our work.
We obtained a sample of this application, and we analyzed

it using TRIGGERSCOPE. Our tool was able to identify a

suspicious SMS-based trigger. In particular, TRIGGERSCOPE

returned the following low-level constraint: (&& (!=
(#sms/#sender endswith v(#storage)) 0) (!=
(#sms/#body startswith v(#storage))) 0).

The constraint indicates that the sender of the SMS and the

message body are checked against hard-coded values read

from the file-system (indicated by the #storage tag). The

analysis also determined that, only if the checks are satisfied,

the abortBroadcast() method is invoked2, which is

suspicious. Upon manual investigation, we determined that

these checks are implemented as part of a SMS-based

backdoor-like functionality that gives the possibility to the

owner of the application to trigger, at will, a variety of

malicious actions. For example, it is possible to leak the

victim’s private conversations, GPS location, and device

tracking information, but it is also able to capture screenshots,

collect information about online accounts, and capture

real-time voice calls.

VI. LIMITATIONS AND COUNTERMEASURES

Our analysis system has a number of limitations, which we

discuss in this section.
First, our analysis system shares the same limitations of

many other static analysis approaches. For example, it is

possible that our implementation does not model precisely-

enough the many Android-specific components (e.g., Binder

RPC). We consider the complete and precise modeling of these

aspects as out of scope and subject for future research.
Our prototype cannot currently fully analyze functionality

that is implemented through the usage of reflection, dynamic

code loading [46], native code [16], or invocations to the

2In previous versions of Android, the invocation of this method would have
prevented the suspicious SMS to reach the default messaging application,
hiding the reception of the SMS from the device’s user.

Runtime.exec() API: All these techniques could be used

to implement generic forms of obfuscation, or to specifically

hide the trigger-based nature of the code [50]. However, note

that in a context like the U.S. DoD marketplace, the mere

usage of these techniques (which can be reliably detected

by any static analyzer, including TRIGGERSCOPE) would

certainly raise suspicion, it would affect the stealthiness of

the malware, and it would make existing malware detection

techniques [18], [36], [64] (whose feature sets cover the

previously-listed forms of obfuscation) more effective.

A second limitation is that our current prototype handles

a limited number of trigger inputs (i.e., time, location, and

text messages). However, we note that, although it would

require a substantial engineering effort, it is conceptually easy

to extend our prototype to handle additional sources. In fact,

the current prototype already shows that it is possible to model

complex Android objects (like Date and Location) as well

as String objects (like a text message’s body and sender).

We also note that the key contribution of our work is not the

development of a complete product, but it is to show that the

idea of detecting malicious behavior by focusing on triggers

– and not on the triggered behavior per se – is effective in

practice. However, we acknowledge that, while the extension

of the prototype is conceptually trivial, one would also need

to perform additional experiments and analysis to study and

characterize the kind of checks normally employed by benign

apps, and to tune the classification routines accordingly.

The third limitation relates to the possibility for a mali-

cious application to move the suspicious trigger outside the

application itself, for example, to a web server. As our static

analysis tool has no access to any remote code, the current

prototype would not detect this suspicious behavior. However,

a malicious application now relies on an external component,

and this would affect both its reliability and stealthiness.

Moreover, in order for an application to execute a sensitive

operation only after a “signal” from an external component,

the application would still need to include a check in its code,

which could be detected by extending our prototype to detect

triggers based on network inputs.

A final limitation is that a malicious application could

attempt to obfuscate the implementation of a check so that

it would resemble an innocuous recurring check. For exam-

ple, the application could perform a series of mathematical

operations that consists in adding and subtracting the same

quantities so that, as a net result, the check is equivalent

to a hard-coded check. However, while an application could

attempt to obfuscate the semantics of a check, our system

would still accurately record (in an expression tree) all the

operations performed on the relevant objects. Even if, in the

general case, it can be difficult to reconstruct the un-obfuscated
semantics of a check, approaches based on anomaly detection

(on the number and complexity of the operations involved)

could be able to at least detect the mere obfuscation attempt,

which, in certain scenario, might already be considered as

ground for rejection.

390390

VII. RELATED WORK

In this section, we place our work in the context of other

approaches to improving the security of the Android platform.

Most relevant are static and dynamic analyses for either

detecting or preventing attacks, which we describe in this

section.
Static Analyses. Several static analysis approaches have been

proposed to detect malicious Android applications. One of

the first was Kirin [31], which recovers the set of per-

missions requested by applications with the goal of iden-

tifying potentially-malicious behavior. Other works include

RiskRanker [36] and DroidRanger [64], which rely on sym-

bolic execution and a set of heuristics to detect unknown ma-

licious applications. FlowDroid [19] and DroidSafe [35] pro-

pose precise static taint analyses to detect potentially malicious

data flows. Differently, Drebin [18] and DroidAPIMiner [14]

are two approaches that extract several features from Android

applications (e.g., requested permissions, invoked framework

APIs) and then apply machine learning techniques to perform

classification.
Similarly to these projects, TRIGGERSCOPE aims to identify

suspicious behavior in Android applications. However, while

the goal of existing systems is to perform malware detection

in the general sense, the main goal of our work is the

identification of triggered malware (through the identification

of logic bombs). In other words, we focus on the detection of

functionality that are not malicious per se, but that could be

considered as such because they are executed only under very

specific circumstances. As discussed in the evaluation section,

existing approaches are clearly outperformed by TRIGGER-

SCOPE when tasked to detect triggered malware (like the one

shown in Figure 1).
AppContext [62] is a system proposed in a software en-

gineering venue. It leverages supervised machine learning to

classify potentially malicious behaviors by taking into account

the context in which such behaviors are executed. AppContext

works in two steps: First, it starts from a set of actions

that are known to be suspicious (i.e., methods that match

known malware signatures [32], [2]); Then, the analysis adds

context by considering which category of input controls the

execution of such suspicious actions. While this approach

shares the same basic observation as our work (i.e., just

looking at behaviors alone is not enough to perform precise

classification), it also significantly differs.
One of the main differences is that the set of behaviors that

AppContext considers as suspicious (or, according to the ter-

minology used in this paper, sensitive) is much narrower than

ours. This aspect prevents this approach to detect logic bombs

where the triggered behavior is not suspicious per se (as in our

opening example in Figure 1). Note that AppContext’s choice

to select a narrow set of potentially-suspicious behaviors is

necessary by design. In fact, since AppContext considers any
check that involves certain inputs as a trigger (independently

from the typology of the check itself), flagging a much wider

set of actions as suspicious (as we do) would cause a very
high false positive rate.

As we explained in the paper, in our work we take the

opposite view: we first identify suspicious triggers (based on

the checks that the code performs on inputs) and, only as a

subsequent step, we consider which behavior these triggers can

control. Thus, the triggered behavior per se has a much less

important role in our analysis, and our approach can hence be

much more lenient with the definition of sensitive operations.

This different design choice allows us to detect triggers like the

one shown in Figure 1, where the action (sending information

to the network) is potentially sensitive but not suspicious per
se, while having a very low false positive rate (0.38%).

Another important difference with respect to AppContext is

that our static analysis provides details about each suspicious

check, going well-beyond the mere detection (see our discus-

sion in Sections V-F and V-G). Such checks reveal the actual

trigger condition, such as the inputs needed to reach certain

behaviors. This information is invaluable when automatically

identifying logic bombs, but it is also very useful for efficient

manual analysis.

Dynamic Analyses. As in the case of static analyzers, many

systems have been proposed that apply dynamic analyses

to Android applications in a security context. Hornyack et

al. present AppFence [38], a dynamic system implemented as

modifications to the Android framework that prevents attacks

against user privacy via data shadowing. Along similar lines,

Enck et al. [29] present TaintDroid, a dynamic taint analy-

sis that performs whole-system data flow tracking through

modifications to the underlying Android framework and na-

tive libraries. Other efforts, such as Mobile Sandbox [53],

CopperDroid [49], [55], and Andrubis [40] developed tools

and techniques to dynamically analyze unknown Android

applications. Google also makes use of dynamic analysis in

Bouncer [41], an automated system that screens submissions

to the Google Play Store.

Finally, other research has proposed approaches based on

dynamic analysis to perform multipath execution and dynamic

symbolic execution of unknown Windows binaries [43], and on

Java and Android applications [8], [34], [42], [61], [48]. These

achieve higher code coverage than simpler dynamic analysis

tools.

However, all of these systems share several fundamental

limitations. Due to their nature, their analysis can be detected

and evaded [21], [44] and they cannot guarantee complete

coverage of the applications under test. Even more important,

even in those cases where the functionality implemented in

a logic bomb is reached, these systems are not capable of

determining whether the just-executed check or functionality

was malicious or not. In fact, at the very least, these tools

would require a very fine-grained specification of the intended

app behavior, something that is typically not available.

To solve this limitation, one approach would be to extend

such systems to keep track of detailed information related

to these checks, similarly to what TRIGGERSCOPE does, to

then reconstruct their semantics. Whether this is possible

is a very interesting direction for future work. Nonetheless,

static analysis systems are preferable, as they are not affected

391391

by coverage-related issues, and, therefore, they do not risk

missing relevant behavior due to the malicious functionality

being executed only after, for example, a user successfully

logs in.

One last project that relates to ours was proposed by

Crandall et al. [25]. In that work, the authors aim to detect

hidden time bombs in Windows binaries by running a virtual

machine at different rates of perceived time and correlating

memory write frequency to timer interrupt frequency. The

authors show that their approach was able to detect time-

related behaviors in four Windows worms. However, this work

has also several limitations. First, it is based on dynamic

analysis, and, therefore, it shares the limitations of the previous

approaches. Second, this approach is intrinsically related to

time-related behaviors and it would be extremely difficult, if

not impossible, to adapt it to other trigger inputs. We note that

TRIGGERSCOPE could be extended to other trigger inputs, the

only challenge being engineering effort.

VIII. CONCLUSIONS

In this paper, we tackle the challenge of precisely identi-

fying logic bombs in Android applications. To this end, we

propose the idea of analyzing path predicates (checks) to

determine whether they encode a narrow condition, and we

introduced trigger analysis as a static program analysis for

identifying suspicious trigger conditions that guard potentially-

sensitive functionality in Android applications.

To evaluate the practicality of our idea, we implemented

a prototype called TRIGGERSCOPE to detect time-, location-,

and SMS-based triggers, and evaluated it over a large cor-

pus of benign and malicious applications. Our evaluation

demonstrates that trigger analysis is capable of automatically

and precisely discovering both interesting and malicious path

predicates on sensitive operations in these applications, in-

cluding previously-unknown backdoors in benign apps from

the official market, and a variety of logic bombs in real-world

malicious samples. Finally, our experiments show that existing

approaches are not suitable for detecting logic bombs.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their

valuable feedback. We would also like to thank Sebastian

Pöplau and Ryan Magennis for their help with the evaluation

of our work, and Yousra Aafer for her help in reproducing

DroidAPIMiner. Finally, we would like to thank Betty Sebright

and her team for their significant help in motivating the

development of this work.

This material is based on research sponsored by DARPA

under agreements number FA8750-12-2-0101 and FA8750-15-

2-0084. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or

endorsements, either expressed or implied, of DARPA or the

U.S. Government.

REFERENCES

[1] AceDeceiver: First iOS Trojan Exploiting Apple DRM Design Flaws
to Infect Any iOS Device. http://researchcenter.paloaltonetworks.
com/2016/03/acedeceiver-first-ios-trojan-exploiting-apple-drm-design-
flaws-to-infect-any-ios-device/.

[2] Androguard Signatures. https://code.google.com/p/androguard/wiki/
DatabaseAndroidMalwares.

[3] Android Open Source Project (AOSP). https://source.android.com/.
[4] dex2jar - Tools to work with android .dex and java .class files. http:

//code.google.com/p/dex2jar/.
[5] HackingTeam’s private conversation with Ecuador’s representative –

WikiLeaks. https://wikileaks.org/hackingteam/emails/emailid/630533.
[6] HackingTeam’s private conversation with Egypt’s representative – Wik-

iLeaks. https://wikileaks.org/hackingteam/emails/emailid/530895.
[7] HackingTeam’s private conversation with Saudi Arabia’s representative

– WikiLeaks. https://wikileaks.org/hackingteam/emails/emailid/74975.
[8] JPF-symbc: Symbolic PathFinder. http://babelfish.arc.nasa.gov/trac/jpf/

wiki/projects/jpf-symbc.
[9] My Remote Phone application. https://play.google.com/store/apps/

details?id=com.innovationdroid.myremotephone.
[10] Pirated iOS App Stores Client Successfully Evaded Apple iOS Code Re-

view. http://researchcenter.paloaltonetworks.com/2016/02/pirated-ios-
app-stores-client-successfully-evaded-apple-ios-code-review/.

[11] RemoteLock application. http://www.androlib.com/android.application.
tw-nicky-lockmyphonetrial-pqwBC.aspx.

[12] Soot: a Java Optimization Framework. http://www.sable.mcgill.ca/soot/.
[13] WALA: T.J. Watson Library for Analysis. http://wala.sourceforge.net/.
[14] Y. Aafer, W. Du, and H. Yin. DroidAPIMiner: Mining API-Level

Features for Robust Malware Detection in Android. In International
Conference on Security and Privacy in Communication Networks (Se-
cureComm), 2013.

[15] Adrian Ludwig. Android Security State of the Union. Black Hat USA
Briefings, 2015.

[16] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupe, M. Polino, P. de Geus,
C. Kruegel, and G. Vigna. Going Native: Using a Large-Scale Analysis
of Android Apps to Create a Practical Native-Code Sandboxing Policy.
In Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS), 2016.

[17] AppBrain. Number of Available Android Applications. http://www.
appbrain.com/stats/number-of-android-apps, March 2016.

[18] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck. Drebin:
Effective and Explainable Detection of Android Malware in Your Pocket.
In Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS), 2014.

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le
Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for
Android Apps. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2014.

[20] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. PScout: Analyzing
the Android Permission Specification. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2012.

[21] G. S. Babil, O. Mehani, R. Boreli, and M.-a. Kaafar. On the Ef-
fectiveness of Dynamic Taint Analysis for Protecting Against Private
Information Leaks on Android-based Devices. In Proceedings of the
International Conference on Security and Cryptography, 2013.

[22] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin.
Automatically Identifying Trigger-based Behavior in Malware. In Botnet
Detection, 2007.

[23] C. Cadar, D. Dunbar, and D. Engler. KLEE : Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2008.

[24] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele, C. Kruegel, G. Vigna,
and Y. Chen. EdgeMiner: Automatically Detecting Implicit Control
Flow Transitions through the Android Framework. In Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS),
2015.

[25] J. R. Crandall, G. Wassermann, D. A. S. D. Oliveira, Z. Su, S. F. Wu, and
F. T. Chong. Temporal Search: Detecting Hidden Malware Timebombs
with Virtual Machines. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2006.

392392

[26] Defense Information Systems Agency, Department of Defense. DoD
Mobility Program. http://www.disa.mil/Services/Enterprise-Services/
Mobility.

[27] Denis Maslennikov. ZeuS-in-the-Mobile Facts and Theories. https:
//securelist.com/analysis/36424/zeus-in-the-mobile-facts-and-theories/.

[28] E. Dupuy. JD-Gui: Yet another fast java decompiler. http://jd.benow.ca/.
[29] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and

A. N. Sheth. TaintDroid: An Information-Flow Tracking System for
Realtime Privacy Monitoring on Smartphones. In Proceedings of the
USENIX Conference on Operating Systems Design and Implementation
(OSDI), 2010.

[30] W. Enck, M. Ongtang, and P. McDaniel. Kirin Analysis Tool. http:
//siis.cse.psu.edu/tools/kirin-0.1.tar.gz, 2009.

[31] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight Mobile Phone
Application Certification. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2009.

[32] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy: Semantics-Based
Detection of Android Malware Through Static Analysis. In Proceedings
of the ACM Symposium on the Foundations of Software Engineering
(FSE), 2014.

[33] Y. Fratantonio, A. Machiry, A. Bianchi, C. Kruegel, and G. Vigna.
CLAPP: Characterizing Loops in Android Applications. In Proceedings
of the ACM Symposium on the Foundations of Software Engineering
(FSE), 2015.

[34] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated
Random Testing. In ACM Sigplan Notices, 2005.

[35] M. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Rinard.
Information-Flow Analysis of Android Applications in DroidSafe. In
Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS), 2015.

[36] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. RiskRanker: Scal-
able and Accurate Zero-day Android Malware Detection. In Proceedings
of the International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2012.

[37] Hex-Rays. IDA Pro: a cross-platform multi-processor disassembler and
debugger. http://www.hex-rays.com/products/ida/index.shtml.

[38] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These
Aren’t the Droids You’re Looking For: Retrofitting Android to Protect
Data from Imperious Applications. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS), 2011.

[39] IDC. Smartphone OS Market Share, Q1 2015. http://www.idc.com/
prodserv/smartphone-os-market-share.jsp, May 2015.

[40] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer. ANDRUBIS-1,000,000 Apps Later: A
View on Current Android Malware Behaviors. In Proceedings of the
International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS), 2014.

[41] H. Lockheimer. Android and Security. http://googlemobile.blogspot.
com/2012/02/android-and-security.html, February 2012.

[42] N. Mirzaei, S. Malek, C. S. Pasreanu, N. Esfahani, and R. Mahmood.
Testing Android Apps Through Symbolic Execution. In ACM SIGSOFT
Software Engineering Notes, 2012.

[43] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple Execution
Paths for Malware Analysis. In Proceedings of the IEEE Symposium on
Security and Privacy, 2007.

[44] J. Oberheide. Dissecting Android’s Bouncer. https://www.duosecurity.
com/blog/dissecting-androids-bouncer, June 2012.

[45] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L.
Traon. Effective Inter-Component Communication Mapping in Android
with Epicc: An Essential Step Towards Holistic Security Analysis. In
Proceedings of the USENIX Security Symposium, 2013.

[46] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute This! Analyzing Unsafe and Malicious Dynamic Code Loading

in Android Applications. In Proceedings of the Annual Symposium on
Network and Distributed System Security (NDSS), 2014.

[47] S. Rasthofer, S. Arzt, and E. Bodden. A Machine-learning Approach
for Classifying and Categorizing Android Sources and Sinks. In
Proceedings of the Annual Symposium on Network and Distributed
System Security (NDSS), 2014.

[48] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. Harvesting
Runtime Values in Android Applications that Feature Anti-Analysis
Techniques. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS), 2016.

[49] A. Reina, A. Fattori, and L. Cavallaro. A System Call-Centric Anal-
ysis and Stimulation Technique to Automatically Reconstruct Android
Malware Behaviors. EuroSec, 2013.

[50] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding Malware Analysis
Using Conditional Code Obfuscation. In Proceedings of the Annual
Symposium on Network and Distributed System Security (NDSS), 2008.

[51] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick Your Con-
texts Well: Understanding Object-Sensitivity. In Proceedings of the
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), 2011.

[52] P. Software. JEB: a Dalvik Bytecode Decompiler. https://www.
pnfsoftware.com/.

[53] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann.
Mobile-sandbox: Having a Deeper Look into Android Applications. In
Proceedings of the Annual ACM Symposium on Applied Computing
(SAC), 2013.

[54] Symantec. Android Threat Set to Trigger On the End of Days, or the
Day’s End. http://www.symantec.com/connect/blogs/android-threat-set-
trigger-end-days-or-day-s-end, May 2011.

[55] K. Tam, S. Khan, A. Fattori, and L. Cavallaro. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors. In Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS),
2015.

[56] The Guardian. Hacking Team hacked: firm sold spying tools to
repressive regimes, documents claim. http://www.theguardian.com/
technology/2015/jul/06/hacking-team-hacked-firm-sold-spying-tools-
to-repressive-regimes-documents-claim.

[57] The Huffington Post. Hacking Team, Maker Of Government Surveil-
lance Software, Targeted In Attack. http://www.huffingtonpost.com/
2015/07/06/hacking-team n 7734926.html.

[58] The Register. Hacking Team’s snoopware ‘spied on anti-communist
activists in Vietnam’. http://www.theregister.co.uk/2015/07/13/hacking
team vietnam apt.

[59] U.S. Department of Homeland Security, U.S. Federal Bureau of In-
vestigation. Threats to Mobile Devices Using the Android Platform.
http://publicintelligence.net/dhs-fbi-android-threats/, August 2013.

[60] Veo Zhang, Trend Micro. Hacking Team RCSAndroid
Spying Tool Listens to Calls; Roots Devices to Get In.
http://blog.trendmicro.com/trendlabs-security-intelligence/hacking-
team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in/.

[61] M. Y. Wong and D. Lie. IntelliDroid: A Targeted Input Generator for the
Dynamic Analysis of Android Malware. In Proceedings of the Annual
Symposium on Network and Distributed System Security (NDSS), 2016.

[62] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. AppContext:
Differentiating Malicious and Benign Mobile App Behaviors Using
Context. In Proceedings of the International International Conference
on Software Engineering (ICSE), 2015.

[63] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization
and Evolution. In Proceedings of the IEEE Symposium on Security and
Privacy, 2012.

[64] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android
Markets. In Proceedings of the Annual Symposium on Network and
Distributed System Security (NDSS), 2012.

393393

APPENDIX

A. Detailed Insights In Detected Suspicious Triggers

Application Package Name Time-Triggered Behavior

bvz.commutesms Automatically sends text messages and customizes their content given the
hour of the day.

com.BjrM Writes different files to disk depending on the day of the week.

com.bigtincan.android.adfree Checks for expiration date.

com.blogspot.markalcalaramos.android Automatically sends a text message 30 seconds after a missed call.

com.ghostleopard.weathermaxlite Customizes its GUI by selecting different icons depending on the hour of the
day.

com.px3j.lso Checks for expiration date.

com.sivartech.GoogleIO Notifications for Google I/O events.

com.vesperaNovus.app.StrayPhoneFinderFree Uses time as a source of randomness, by checking
(1L & System.currentTimeMillis() / 1000L) == 0L.

com.zyxsolutions.schedulersms Performs different SMS-related operations depending on the day of the week.

nz.co.mobiledevelopment.ProfileController Checks for expiration date.

Application Package Name Location-Triggered Behavior

com.mv.tdt Checks the current location against a set of predefined locations.

com.harmanbecker.csi.client Checks whether the user’s location is within a specified area.

net.dotquasar.android.Imakokoroid Compares the current location with a previously stored location.

com.mv.mobie Checks the current location against a set of predefined locations.

jp.nekorl.rainnetwork Checks whether the current latitude is between -90 and 90, and whether the
current longitude is between -180 and 180. This is done as a sanity check,
and is easy to filter similar cases out if deemed uninteresting.

com.googlecode.androidcells Compares the current location with a previously stored location.

com.mv.tdtespana Checks the current location against a set of predefined locations.

jp.co.sha.YamagataMap Checks whether the device is in the vicinity of Yamagata Station, Japan. If
that is the case, the application displays “Welcome to Yamagata Station.”
The check is implemented by comparing the latitude and longitude against
hardcoded values.

Table IV: This table provides an overview of the samples our system flagged as interesting. In particular, this table focuses on the time- and
location-related interesting triggers. For each of these apps, TRIGGERSCOPE returned precise and useful information about the
suspicious constraints. As an example, we consider the com.px3j.lso application. This application first retrieves the current
date, and then compares it to a Date object that encodes the date May 10th, 2010. The comparison is performed by using the
Date.after() method. The tool annotates the guarded basic block with the following raw constraint: (!= (#now after
Date(2010/5/10 0:0:0)) 0). Note how the current date is symbolically represented by #now, how the tool precisely
models the involved APIs, and how it correctly identifies the suspicious comparison.

394394

Application Package Name SMS-Triggered Behavior

se.oscar.skandiabankensms Online banking application that checks the sender number against the hardcoded
value +4781001001. This is part of the implementation of a two-factor authentica-
tion scheme.

mk.bisera.smslocator It checks if the incoming SMS contains the string SMSLocator:. This is done to
determine whether the app should handle the received message. In such cases, the
message was probably sent by the same application (or a compatible one) running
on a different device.

com.messySMS.android free It checks if the incoming SMS starts with the s:// string to determine whether the
app should handle it.

tw.nicky.LockMyPhoneTrial
(RemoteLock) It checks whether the incoming SMS matches with the

adfbdfgertefvgdfgrehgjuiokhjgvbewruitkmbcvdfsgyhytdfsw string. If
that is the case, the application unlocks the phone. This is the implementation of the
backdoor discussed in Section V.F.

com.app.publish It checks if the sender field is set to the nothing passed in string. In this case,
the application checks the value of the field against the default value, set to that
hardcoded string.

no.knowit.widgets.beta It checks if the incoming SMS starts with the Disponibelt: string to determine
whether the app should handle it.

com.innovationdroid.myremotephone
(MyRemotePhone) It checks whether the incoming SMS contains the following two strings: MPS: and

gps. If that is the case, the application automatically sends an SMS to the original
sender containing the current GPS coordinates! We discussed this application in
detail in Section V.F.

sms.encryptor.v2.free It checks if the incoming SMS starts with !@! or !$!, to determine whether the app
should handle it.

com.gallicsoft.shoppinglist It checks if the incoming SMS starts with the #SL# string to determine whether the
app should handle it.

com.mobileglobe.android.MobileGlobe It checks if the incoming SMS starts with (MobileGlobe) or (DirectGlobe), to
determine whether the app should handle it.

com.counterpoint.dondeesta It checks if the incoming SMS is equal to "???". If that is the case, the application
automatically sends an SMS to the original sender containing the current GPS
coordinates. However, differently than MyRemotePhone, this application checks that
the sender of the message belongs to a set of trusted numbers.

com.care2wear.imhere This application implements the same functionality as the previous application.
However, it checks for the "?pos?" string (instead of "???"), and directly notifies
the user about the request (instead of relying on a whitelist).

com.sophos.mobilecontrol.client.android It checks if the incoming SMS starts with //sM/, to determine whether the app
should handle it.

com.opticaller.opticaller It checks if the incoming SMS starts with *OCProvision* or *OCLic*, to deter-
mine whether the app should handle it.

com.mobileiron.vodafone.MIClient It checks if the incoming SMS starts with MICtrlCmd:, to determine whether the
app should handle it. If that is the case, the application would parse the SMS to
determine which command must be executed.

com.telenor.hu.ematrica It checks whether the sender is +36208100000 or +36208100100, to determine
whether the app should handle it.

com.amine.aloto It checks whether the sender is LOTO, to determine whether the app should handle
it.

Table V: This table provides an overview of the samples flagged as interesting by TRIGGERSCOPE. In particular, this table focuses on the
triggers based on the content (or the sender) of incoming SMS messages.

395395

B. Relevant Code Snippets

1 def isTrigger(p):
2 if not isSuspicious(p):
3 return False
4 if controlsSensitiveAction(p):
5 return True
6 return False
7

8 def controlsSensitiveAction(p):
9 # Get all blocks guarded by a given

10 # predicate.
11 blks = p.getGuardedBlocks()
12 if isSensitive(blks):
13 return True
14 for b in blks:
15 # Get all the objects that are
16 # (directly or indirectly)
17 # modified within this block.
18 for obj in b.getModifiedObjects():
19 # Get all the predicates that are
20 # related to an object.
21 preds = obj.getRelatedPredicates()
22 for p2 in preds:
23 if controlsSensitiveAction(p2):
24 return True
25 return False
26

27 def isSensitive(blocks):
28 for b in blocks:
29 # Get all invoked methods within
30 # this block.
31 for m in b.getInvokedMethods():
32 if isSensitiveMethod(m):
33 return True
34 # Get all blocks of this method.
35 mblks = m.getBlocks()
36 if isSensitive(mblks):
37 return True
38 return False
39

40 def isSuspicious(predicate):
41 # It returns True iff the predicate’s
42 # structure and semantic match the
43 # definition of "suspicious" provided
44 # by the user.
45 ...
46

47 def isSensitiveMethod(method):
48 # It returns True iff the target
49 # (framework) method matches the
50 # definition of "sensitive" provided
51 # by the user.
52 ...
Figure 7: Pseudocode of the isTrigger function (and related

ones). This function returns True if and only if the given
predicate matches our definition of trigger. The pseudocode
is simplified for clarity.

1 public boolean
2 AlternativeControl(String param) {
3 if (param.startsWith("#")) {
4 SendControlInformation(
5 ExtractNumberFromMessage(param));
6 return true;
7 }
8

9 if (param.startsWith("/")) {
10 String str =
11 ExtractNumberFromMessage(param);
12 if (str.length() > 7) {
13 ValueProvider.SaveBoolValue(
14 "AlternativeControl", true);
15 ValueProvider.SaveStringValue(
16 "AlternativeNumber", str);
17 SendControlInformation(str);
18 return true;
19 }
20 }
21

22 // ...
23 }
Figure 8: The AlternativeControl method from the Zitmo

malware which implements SMS-based command-and-
control behavior. TRIGGERSCOPE automatically flagged
the predicates involving startsWith and length
method invocations on SMS data as suspicious (lines 3,
9, and 12).

396396

