Anomaly Detection and Training Data Scarcity

W. Robertson UC Berkeley F. Maggi Politecnico di Milano C. Kruegel, G. Vigna UC Santa Barbara

NDSS 2010 San Diego, CA

Robertson et al.

Training Data Scarcity

NDSS 2010 1 / 21

Anomaly detection

- Black-box, "hands-free" approach for detecting attacks
- Profiles constructed from training set
- Deviations from profiles considered to be attacks

Anomaly detection

- Black-box, "hands-free" approach for detecting attacks
- Profiles constructed from training set
- Deviations from profiles considered to be attacks
- Focus on web application anomaly detection

Training data

- Detection quality crucially depends on training data
- Data can be noisy
- Data can be incomplete

Resource invocation distribution

Overview

Introduction

Exploiting global information Enhanced training phase Under-trained profile database

Using global profiles

Evaluation

Conclusions

Profile clusters

Profile clusters

Robertson et al.

Profile clusters

Observation

- 1. Features often can be grouped into semantically-similar clusters.
- 2. Similar features induce similar profiles.

Observation

- Features often can be grouped into semantically-similar clusters.
- 2. Similar features induce similar profiles.

Can under-trained profiles be replaced by similar well-trained profiles?

Training procedure

Robertson et al.

Training Data Scarcity

NDSS 2010 12 / 21

$$\kappa = 1$$

 $\kappa = 1$

$$\kappa = 2$$

$$\kappa = 2$$

 $\kappa = 4$

 $\kappa = 4$

Profile distance function

$$\delta\left(\boldsymbol{c}_{i},\boldsymbol{c}_{j}\right) = \frac{1}{|\boldsymbol{c}_{i} \cap \boldsymbol{c}_{j}|} \sum_{\boldsymbol{m}_{i}^{(\cdot)},\boldsymbol{m}_{j}^{(\cdot)} \in \boldsymbol{c}_{i} \cap \boldsymbol{c}_{j}} \delta_{(\cdot)}\left(\boldsymbol{m}_{i}^{(\cdot)},\boldsymbol{m}_{j}^{(\cdot)}\right)$$

Structure model distance function

$$\delta_{\mathsf{s}}\left(\boldsymbol{m}^{\mathsf{s}}_{i}, \boldsymbol{m}^{\mathsf{s}}_{j}\right) = 1 - rac{\mathbb{O}_{i} \cap \mathbb{O}_{j}}{\mathbb{O}_{i} \cup \mathbb{O}_{j}}$$

Robertson et al.

Substitution procedure

Substituting under-trained profiles

Substituting under-trained profiles

Substituting under-trained profiles

Data set

- Real-world web applications from academic, industry domains
- ► Full content of HTTP connections over 3 months
- ► 58 million HTTP requests
 - ► 36,392 unique resources
 - ► 16,671 unique parameters

Profile clustering quality

$$\kappa = 8$$

Profile clustering quality

$$\kappa = 64$$

Detection accuracy

Conclusions

- Anomaly detection can suffer from incomplete training data
- But, many features have similar characteristics
- Framework exploits feature similarity to associate under-trained models with well-trained models
- Enhanced sensor shown to perform well over large data set despite incomplete training data