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Anomaly detection

I Black-box, “hands-free” approach for detecting
attacks

I Profiles constructed from training set

I Deviations from profiles considered to be attacks

I Focus on web application anomaly detection
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Training data

I Detection quality crucially depends on training data

I Data can be noisy

I Data can be incomplete
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Ex: Web application

webanomaly

Client Web application

/search
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Resource invocation distribution
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Overview

Introduction

Exploiting global information
Enhanced training phase
Under-trained profile database

Using global profiles

Evaluation

Conclusions
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Profile clusters
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Under-trained profiles

Observation

1. Features often can be grouped into
semantically-similar clusters.

2. Similar features induce similar profiles.

Can under-trained profiles be replaced by similar
well-trained profiles?
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Under-trained profiles
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Overall procedure
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Training procedure
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Sampling under-trained profiles
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Clustering under-trained profiles

I Profile distance function
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Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles

Robertson et al. Training Data Scarcity NDSS 2010 15 / 21



Mapping under-trained profiles
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Substitution procedure
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Substituting under-trained profiles
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Data set

I Real-world web applications from academic,
industry domains

I Full content of HTTP connections over 3 months

I 58 million HTTP requests
I 36,392 unique resources

I 16,671 unique parameters
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Profile clustering quality

κ = 8
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Detection accuracy
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Conclusions

I Anomaly detection can suffer from incomplete
training data

I But, many features have similar characteristics

I Framework exploits feature similarity to associate
under-trained models with well-trained models

I Enhanced sensor shown to perform well over large
data set despite incomplete training data
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