
Run-time Detection of
Heap-based Overflows

William Robertson <wkr@cs.ucsb.edu>
Christopher Kruegel <chris@cs.ucsb.edu>

Darren Mutz <dhm@cs.ucsb.edu>
Fredrik Valeur <fredrik@cs.ucsb.edu>

UC Santa Barbara

Outline

• Motivation and Related Work
• Exploiting the Heap
• Heap Protection Technique
• Detection and Performance

Evaluation
• Deployment
• Conclusions and Future Work

Motivation

• Why buffer overflow protection?
– “Insecure” languages
– Programmers are only human

• Why not use Java / C# / Cyclone /
…?

• Why protect the heap?
• What solutions already exist?

Recent Heap Vulnerabilities

• OpenSSH < 3.7.1 buffer
management vulnerability

• Snort stream4 preprocessor < 2.0
heap overflow vulnerability

• CVS < 1.11.5 double-free()
vulnerability

• MS SQL server resolution service
heap overflow vulnerability

• …

Related Work

• Automatic buffer bounds checking
– gcc bounds-checking patch [Jones,

Kelly]
• Preventing stack-based overflows
– ProPolice [Hiroaki Etoh et al.]
– StackGuard [Crispin Cowan et al.]
– StackShield [Vendicator]
– Libsafe / Libverify [Baratloo, Singh,

Tsai]

Related Work (cont.)

• Preventing execution on the stack
– Linux non-exec stack [Solar Designer]

• Preventing execution on the heap
– PAX

• Memory protection systems
– Valgrind [Julian Seward]
– Electric Fence [Bruce Perens]

Outline

• Motivation and Related Work
• Exploiting the Heap
• Heap Protection Technique
• Detection and Performance

Evaluation
• Deployment
• Conclusions and Future Work

The GNU C Library Heap

• Based on Doug Lea’s dlmalloc
• Uses boundary tags and binning
• Memory allocated in chunks
– In-band management information

(boundary tag)
– Application-usable memory region

• Free chunks kept in bins

glibc memory chunks

 struct malloc_chunk

 {

 INTERNAL_SIZE_T prev_size;

 INTERNAL_SIZE_T size;

 struct malloc_chunk *bk;

 struct malloc_chunk *fd;

 };

Exploiting Heap Overflows

• Heap buffer overflow overwrites
header of next chunk in memory

• Attacker controls values placed in
overflown chunk header

• Heap management routines tricked
into writing controlled value into
chosen memory location

unlink()

 #define unlink(P, BK, FD) { \

 FD = P->fd; \

 BK = P->bk; \

 FD->bk = BK; \

 BK->fd = FD; \

 }

Heap Overflow

Heap Overflow (cont.)

Heap Overflow (cont.)

Heap Overflow (cont.)

Exploit Variants

• Heap overflow exploit variants
– frontlink() macro
– Fake chunk headers, size field

manipulation
• Variations of basic exploit
– Can be handled with one defensive

technique

Outline

• Motivation and Related Work
• Exploiting the Heap
• Heap Protection Technique
• Detection and Performance

Evaluation
• Deployment
• Conclusions and Future Work

Heap Protection Technique

• Adaptation of canary-based stack
protection schemes

• Preface memory chunks with seeded
checksum of header fields

• Check integrity of header before
performing operations upon it

Heap Protection (cont.)

• Canaries seeded with random
number

• What prevents attacker from setting
seed to known value?
– Random seed protected with mprotect

()
– Costly, but only performed once per

process

Modified glibc memory
chunks

 struct malloc_chunk

 {

 INTERNAL_SIZE_T magic;

 INTERNAL_SIZE_T __pad0;

 INTERNAL_SIZE_T prev_size;

 INTERNAL_SIZE_T size;

 struct malloc_chunk *bk;

 struct malloc_chunk *fd;

 };

Heap Overflows Reloaded

• Heap buffer overflow overwrites
header of next chunk in memory,
overwriting next chunk header’s
canary

• Attacker controls values placed in
overflown chunk header

• Chunk header integrity check
detects overflow has occurred,
process aborts

Overflow Detected

Overflow Detected (cont.)

Overflow Detected (cont.)

Outline

• Motivation and Related Work
• Exploiting the Heap
• Heap Protection Technique
• Detection and Performance

Evaluation
• Deployment
• Conclusions and Future Work

Evaluation Goals

• Demonstrate detection capability
• Demonstrate low impact on

application performance
• Demonstrate system stability
• Superiority over existing glibc

debugging code

Detection Evaluation

• Ran several recent heap-based
exploits against a test system

• Test system configured in three
states
– no protection
– glibc debugging enabled
– glibc with heap protection enabled

Detection Evaluation
Results

Exploit glibc glibc +
debugging

glibc + heap
protection

wu-ftpd shell aborted aborted

sudo shell aborted aborted

cvs segfault aborted aborted

unlink shell aborted aborted

frontlink shell aborted aborted

evasion shell shell aborted

Performance Evaluation

• Micro-benchmarks
– Tight loop of randomly-sized

allocations
– AIM9 memory benchmark

• Macro-benchmarks
– OSDB (PostgreSQL 7.2.3)
–WebStone (Apache 2.0.40)

Micro-benchmark Results

Benchmark glibc glibc +
debugging

glibc + heap
protection

Loop 1,587 s 2,621 s
(+65%)

2,033 s
(+28%)

AIM9 5,094 s 7,603 s
(+49%)

5,338 s
(+05%)

OSDB Benchmark Results

Benchmark glibc glibc + heap
protection

OSDB 6,015 s 6,070 s (+0.91%)

WebStone Results (response)

WebStone Results
(throughput)

Stability Evaluation

• Ran memory-intensive applications
on protected test system for period
of four weeks

• Deployed on exposed lab machines,
desktops of several authors

• No crashes or other known issues at
this time

Outline

• Motivation and Related Work
• Exploiting the Heap
• Heap Protection Technique
• Detection and Performance

Evaluation
• Deployment
• Conclusions and Future Work

Deployment

• System-wide protection
– all applications using glibc’s heap

automatically protected
• Per-application protection
– uses system loader’s LD_PRELOAD
–minimize system performance hit
–minimize impact of any stability issues

Deployment (cont.)

• Available as glibc patch
• Binary packages available for

selected operating systems and
architectures

Conclusions

• Effective detection and prevention
of heap-based exploits

• Low performance impact in most
cases

• Transparent to existing applications
• Simple to deploy
• Necessary component of layered

defense against system compromise

Future Work

• Adapt technique to similar heap
management systems

• http://www.cs.ucsb.edu/~rsg/heap

