D-Box: DMA-enabled Compartmentalization for
Embedded Applications

Alejandro Mera, Yi Hui Chen, Ruimin Sun, Engin Kirda and Long Lu
Northeastern University
{mera.a, chen.yihui, r.sun, e.kirda and 1.lu} @northeastern.edu

Abstract—Embedded and Internet-of-Things (IoT) devices
have seen an increase in adoption in many domains. The security
of these devices is of great importance as they are often used
to control critical infrastructure, medical devices, and vehicles.
Existing solutions to isolate microcontroller (MCU) resources in
order to increase their security face significant challenges such as
specific hardware unavailability, Memory Protection Unit (MPU)
limitations and a significant lack of Direct Memory Access (DMA)
support. Nevertheless, DMA is fundamental for the power and
performance requirements of embedded applications.

In this paper, we present D-Box, a systematic approach
to enable secure DMA operations for compartmentalization
solutions of embedded applications using real-time operating
systems (RTOS). D-Box defines a reference architecture and a
workflow to protect DMA operations holistically. It provides
practical methods to harden the kernel and define capability-
based security policies for easy definition of DMA operations with
strong security properties. We implemented a D-Box prototype
for the Cortex-M3/M4 on top of the popular FreeRTOS-MPU
(F-MPU). The D-Box procedures and a stricter security model
enabled DMA operations, yet it exposed 41 times less ROP
(return-orienting-programming) gadgets when compared with the
standard F-MPU. D-Box adds only a 2% processor overhead
while reducing the power consumption of peripheral operation
benchmarks by 18.2%. The security properties and performance
of D-Box were tested and confirmed on a real-world case study
of a Programmable Logic Controller (PLC) application.

I. INTRODUCTION

Embedded and IoT devices are increasingly becoming
popular [55)]. Compared to general-purpose computers, these
devices are lightweight, and have the advantage of real-time
responsiveness and low power consumption. Such devices have
also been adopted in critical areas such as intelligent factories,
health care, smart homes, and automotive industry.

Due to the importance of embedded and IoT devices and
their often infrastructure-critical nature, they have, unfortu-
nately, become the major targets of various attacks [IL5], [41]],
(281, [24], [25], [34], [19]. In fact, attackers can often perform
code reuse attacks against these systems by leveraging existing
vulnerabilities in the code, and launch control flow hijacking
attacks when the least privilege principle is not enforced
[S8], [15], [14)]. These attacks can leak private and critical

Network and Distributed Systems Security (NDSS) Symposium 2022
27 February - 3 March 2022, San Diego, CA, USA

ISBN 1-891562-74-6

https://dx.doi.org/10.14722/ndss.2022.24053
www.ndss-symposium.org

information, and allow attackers to control the whole MCU,
or even the devices connected to it.

To protect embedded and IoT devices, existing work has
considered a number of techniques, including firmware analy-
sis [43]], fuzzing [26], attestation [9], and compartmentalization
[21], [36], [20]. Compared to other techniques, compartmen-
talization avoids time and resource-consuming analysis, and
can provide customized configurations for both verification and
protection in real-time.

Despite the benefits of compartmentalization, existing work
has faced many challenges in isolating the MCU resources
for the rather monolithic firmware structure. For example, the
Cortex-M architecture does not provide an address translation
mechanism such as the Memory Management Unit (MMU).
Instead, it provides the MPU with limited functionality to di-
vide and protect the address space. To offer stronger isolation,
ARM has promoted TrustZone-based hardware solutions [13]].
Unfortunately, though, TrustZone has yet very limited avail-
ability on existing MCU devices as described in our survey in

appendix

A more concerning issue is those existing solutions—
despite DMA’s ubiquitous support and heavy usage in mod-
ern MCUs—have totally ignored DMA compartmentaliza-
tion ([36], [21], [20]), provide partial solutions ([3[], [12]),
or propose hardware modifications ([59]) not available be-
yond the academic boundaries. Extending current MPU-based
compartmentalization solutions to support DMA is not a
trivial task. That is, DMA transfer compartmentalization is
challenging because the intrinsic dynamic characteristic of
DMA aggravates the imprecision of static analysis to define
boundaries, permissions and the security policy. Also, the
currently available MPU is not meant to work in a multi-master
environment. Thus, supporting DMA on existing compartmen-
talization schemes requires a holistic re-design.

In this paper, we present D-Box, a systematic approach
to enable secure DMA operations for compartmentalization
solutions targeting MCU-based devices that do not implement
TrustZone, MMU, and PCle interfaces. D-Box adopts the con-
cept of capabilities to validate DMA operations, and enforces
the least privilege principle for RTOS holistically.

We used the FreeRTOS-MPU (F-MPU) as a basis to build
a D-Box prototype due to its wide adoption and growing
popularity in the industry. We improved its security with a
more secure MPU region configuration, kernel extensions, and
a user-friendly security policy definition with explicit support
for DMA operations.

We evaluated D-Box’s security and performance with both
qualitative and quantitative analysis. The results show that
compared with F-MPU, D-Box leverages DMA while reducing
the attack surface of embedded applications when looking
at six security metrics. Furthermore, D-Box incurred a low
overhead to kernel and peripheral operations. Enabling DMA
operations by D-Box methods reduced power consumption
compared to solutions that do not support it. At the same time,
our solution maintained similar RAM and flash requirements as
F-MPU. A case study on a real-world PLC application further
demonstrates D-Box’s capability in enabling high-performance
DMA operations without compromising security.

In summary, this work makes the following contributions:

e We study and advocate the importance of supporting
and protecting DMA-capable peripherals for compart-
mentalization solutions due to the partial or total lack
of DMA support on existing solutions.

e We present D-Box, a systematic approach to enable
secure DMA operations for embedded compartmen-
talization solutions that support high-performance and
a power efficient operation.

e We implemented a D-Box prototype for the official
Cortex-M3/M4 port of FreeRTOS enabling DMA op-
erations while improving its security metrics.

e We demonstrate that supporting DMA operations al-
lows power and CPU usage reduction, which is highly
desirable for battery-powered embedded applications.

e We present a case study of D-Box on a real-world
PLC application; we further discuss D-Box methods
generalization, its integration into other compartmen-
talization solutions, and its limitations.

II. THREAT MODEL AND ASSUMPTIONS

We consider an embedded device that has an MPU and one
or more DMA-capable peripherals. The device runs a mono-
lithic firmware with the following defects: a confused-deputy
vulnerability [1_-] in the managing code of the DMA controller,
a malicious third-party software module with rogue usage of
DMA (i.e., result of a software supply chain attack), and a vul-
nerable read/write primitive with access to the DMA controller
configuration. Furthermore, the firmware is compiled from
multiple first and third-party sources. We assume that first-
party code can be buggy, but not malicious, whereas third-party
code can be malicious and buggy. The code includes function-
ality for scheduling, DMA operations, peripheral drivers, third-
party libraries and user-space applications. In terms of security,
the firmware implements a compartmentalization scheme for
memory and privilege separation, but does not consider DMA
operations.

If an attacker has access to any of the aforementioned
defects, an attack would be devastating. For example, a con-
fused deputy vulnerability can be used to leak sensitive data
by abusing the DMA controller authority to read sensitive
information (e.g., a password) from kernel space; a malicious
task with rogue DMA usage can change the configuration and

1“A confused deputy is a deputy (a program) that has been manipulated
into wielding its authority inappropriately” [49]

Smartwatch
MCU Core Flash
RAM
MPU Buffer DMA
Buffer ctl
------------- @
SPI
A A A AL Al :
I | |
[Oﬂ-chip @ W_ @ * *]

Fig. 1: Architecture of an MCU-based smart watch. (D) Slow
MMIO-based data flows, (2) Real-time and high-throughput
DMA-based data flows.

state of other peripherals such as the GPIO E] controlling the
smartlock of a door without triggering any fault; finally having
arbitrary read/write access to the DMA controller configuration
can compromise the whole system because an attacker can read
or write any memory area or peripheral regardless of existing
MPU protections.

The assumptions of our threat model are reasonable
because several proposed MPU-based compartmentalization
schemes have ignored DMA security issues, or treat them
as an orthogonal security problem. However, we claim that
not considering DMA in an holistic way is insecure. This is
because: first, firmware is a monolithic binary that includes all
the software routines—DMA operations are not the exception;
second, most of the modern MCUs populate and use a DMA
controller or other DMA-capable peripheral; and third, DMA-
capable peripherals can override MPU-based protections.

III. MOTIVATION

Embedded and IoT devices execute firmware and use an
MCU as their central processing unit. MCUs are low-power,
resource-constrained computing units that integrate a core
processor, RAM, flash, and multiple peripherals in a single
SoC (System on a Chip).

Besides particular MCU hardware and firmware char-
acteristics, embedded devices require compartmentalization
methods that cope with specific real-time and low power
requirements. In this context, the DMA is a predominant
communication method that supports high-performance and
reduced power consumption for real-world IoT and embedded
applications.

Consider the smartwatch of Figure [T} DMA is utilized in
high-throughput data flow such as the gyroscope, accelerom-
eter, screen LCD, and Bluetooth ((2) in Figure E]) Without
DMA, these data flows cannot assure the user experience
or functionality (e.g., smooth screen transitions or timing
data acquisition for the smartwatch pedometer). Also, the
DMA controller can efficiently move data between RAM and
peripherals while the core processor is in power-saving mode.

Notice that the MPU arbiters every data flow between
the core processor and the MCU resources ((1) in Figure
[[). This interposition assures that the core processor accesses
only the MCU resources granted by the MPU through MMIO

2Particular acronyms used in this paper are summarized in appendix @

(Memory-Mapped 1/O) operations. On the other hand, the
DMA controller directly accesses peripherals and buffers in
RAM (@ in Figure [T).

In this scenario, the DMA controller can write and read any
memory location of the MCU without restriction. This capacity
has profound security implications. For example, a bug in the
code that manages the DMA controller can wrongly command
it to write beyond the limits of the designated buffers, thus
corrupting heart-beat, distance or other critical information that
the smart watch user may rely on.

IV. BACKGROUND

In this section, we introduce essential concepts to make
it easier to comprehend the software and hardware charac-
teristics of compartmentalization solutions for MCUs and the
challenges related to DMA. We selected the ARM ARMv7-M
[42] as our reference architecture because of its wide adoption
and popularity in IoT and embedded applications. Besides this
particularity, the concepts are generally applicable to other
embedded architectures.

A. The system address map of the Cortex-M

The ARMv7-M supports a single 32-bit address space. This
address space is divided into eight 0.5 GB primary partitions:
code (flash), SRAM (on-chip RAM), peripherals, two RAM
regions, two device regions, and System [42].

The ARMvV7-M architecture assigns physical addresses for
event entry points (vectors), system control and configuration.
The firmware uses these physical addresses to access the entire
memory space through Memory-mapped I/O (MMIO) or DMA
methods. Vendors (i.e., licensees) of ARMv7-M based devices
define SRAM, code and peripheral partitions according to
specific characteristics of the MCU.

B. The Memory Protection Unit

The MPU is an optional component of the ARMv7-M
architecture that implements a scheme to protect and divide
the MCU system address space into different regions. The
MPU does not perform address translation to support virtual
memory schemes such as the MMU of full-fledged computers.
The MPU protection scheme enables the ARMv7-M Protected
Memory System Architecture (PMSAv7) that defines a model
of privileged and unprivileged software execution [42].

MPU regions are restricted in terms of number, size, and
alignment. Usually, the MPU is configured with eight regions,
with very few exceptions on high-end MCUs that support 16
regions [47)]. The size of a region must be a power of 2, with
a minimum size of 32 bytes. Each region must be aligned
naturally according to its size (e.g., a 64 bytes long region
must start at an address that is a multiple of 64). If regions
overlap, the MPU uses the privileges of the region with the
higher number to enforce the access permissions (i.e., higher
region numbers have higher priority). Additionally, there is a
background region (number -1) that, when activated, provides
access to the primary partitions of the memory map, but from
privileged software only.

Transfer Interrupt
configuration Signal

Reload
Config

Core Processor domain

Invalidate
Configuration

DMA Controller domain

Fig. 2: The 3-step DMA life-cycle including operations that
are visible to the core processor and DMA controller domains.
Security critical operations occur in Steps 1 and 3—Adapted
from [43]].

C. The DMA controller operation

The DMA controller is an on-chip peripheral with master
capabilities optimized to move data from a source to a des-
tination. As a master, the DMA controller can communicate
with slaves (peripherals, RAM and flash) without intervention
of the core processor, and without interposition of the MPU.

The DMA controller generally operates following a 3-step
dynamic life-cycle as depicted in Figure 2| First, the firmware
configures a transfer descriptor that defines the source, destina-
tion, and transfer size. The core processor stores the transfer
descriptors in registers mapped into the DMA controller or
RAM. Second, a trigger issued by software or hardware signals
the DMA controller to start the data transfer from the source
to the destination according to the transfer descriptor. Third,
after the transfer finishes, the DMA controller signals the core
processor through an interrupt, and invalidates or reloads the
transfer descriptor.

The DMA controller requires addressing routines to work
with on-chip peripherals implementing communication buses
(e.g., SPI and 12C). The communication bus peripherals allow
the core processor to communicate with multiple off-chip pe-
ripherals (e.g., giroscope, accelerometer, LCD, and Bluetooth
connected through SPI in Figure [I). In a communication bus,
the DMA controller is not aware of the specific off-chip pe-
ripheral that is part of a particular DMA transfer. Therefore, the
firmware must select the specific off-chip peripheral as part of
the configuration (i.e., Step 1) of the DMA life-cycle. A similar
issue is observed in peripherals working as a multiplexer or
proxy. For example, the ADC multiplexes various analog input
channels and requires selecting a particular channel, or define
a sequence of scanned channels before operating with DMA
transfers.

D. Open challenges

Besides the compartmentalization efforts to improve the
security of embedded applications, there are still challenges
that have not been addressed, specifically those related to
DMA, and we summarize them below:

1) Uncertainty on protections: Current compartmentaliza-
tion solutions either overexpose regions merging physically
adjacent resources, or potentially break functionality due to
static analysis imprecision. Both issues are more concerning
for DMA operations because they are intrinsically dynamic
and executed out of the core processor context. These charac-
teristics preclude the usage of static analysis because there is

Protecting DMA configuration
N\ ~__ DMACrir Kernel
jM:;i;i?;?]n Reconnaissance hardening
/ /" (MCU specific) for DMA

Protecting DMA signals
Signal and
Exception
handling

DMA Policy
definiton
(App specific)

Reference Architecture

Fig. 3: D-Box components including a reference architecture
and a workflow to enable DMA operations protecting the steps
one (Configuration) and three (Signals) of the DMA life-cycle.

a semantic gap—due to hardware diversity—between what is
dynamically configured in a transfer descriptor and what the
DMA controller performs by itself upon that configuration.

2) Lack of holistic security solutions: Most of the MPU-
based security solutions ignore DMA operations or consider
them an orthogonal issue [60]. However, a practical solution
must protect and leverage DMA operations to maintain a
balance among security, performance and power consumption.

3) Hardware availability and diversity: Many compart-
mentalization efforts rely on specific hardware that is not
broadly available. For example, the Platform Secure Archi-
tecture (PSA) [13], promoted by ARM, relies on the ARMvS-
M TrustZone and a new MPU programming model. Unfor-
tunately, the ARMvS8-M architecture is scarce in commercial
MCUs. Also, DMA controllers are diverse and implement
different programming models precluding generalizations and
automation.

4) Impractical security policy definition: Current compart-
mentalization solutions require complex security policy defi-
nitions that are not practical, and add a burden to developers.
For example, defining the security policy for [20] requires
developers to define and optimize security properties in a
graph traversal algorithm. Therefore, extending this type of
solutions to support DMA is not trivial, and will make the
policy definition even more complex.

5) Backward compatibility and refactoring: Current solu-
tions require heavy refactoring or compiler-based procedures
that can break compatibility with legacy applications. Also,
compiler-based solutions can modify the memory layout of
the generated firmware binary, which makes validating and
defining the boundaries of DMA operations challenging.

V. SYSTEM DESIGN

D-Box is a systematic approach to enable DMA operations
on compartmentalization solutions of embedded applications.
Our approach includes a reference architecture built on top
of F-MPU, and a workflow (Figure [3) to enable secure DMA
operations. It addresses the challenges mentioned earlier with
the following goals:

e Explicit protections: D-Box should define explicit
resources to maintain application functionality and
avoid uncertainty.

e Holistic DMA support: D-Box should support DMA
operations as an intrinsic characteristic of the com-
partmentalization schema.

e Power and performance: D-Box should respect the
power, performance and timing constraints required by
embedded and real-time applications.

Software Hardware

B Resources, [Resources,
%Capabm!ies | [Capabilities | | @ Core (MPU DMA Ctrl
= H H B ™
2 H ' [Securi
et || [z | R . o fo
=} . 1
| H System Bus)
- B 1S i @ *S s s % s

System peripherals, | RAM, | RAM USART,
12C2, SPI2,
RAM, flash

privileged RAM & flash | flash
flash * *

FreeRTOS-MPU }<:@:>{DMA Task

Fig. 4: D-Box reference architecture including a software
and hardware perspective. “M” and “S” denote master and
slave interfaces of the Cortex-M respectively. (*) denotes user-
defined regions mapped to MCU resources.

Privileged!

e Compatibility: D-Box should rely exclusively on
commonly-available hardware of MCUs, and it should
consider its limitations and diversity.

e Applicability: D-Box should be pragmatic in terms of
security policy definition and usage.

e Backward support: D-Box should be amenable with
legacy applications requiring little or no engineering
effort to support them.

A. D-Box reference architecture

D-Box defines a task as the unit of compartmentalization.
A task is a natural partitioning scheme that the developer
explicitly defines with the required resources and capabilities
(® and © in Figure []) to implement specific functionality.
D-Box uses the security policy (@ in Figure []) to securely
override the MPU protections through a trusted DMA task ((3)
in Figure [4)) that configures the DMA controller upon a request.
D-Box enforces a role separation, assuring that no single
task has enough privileges to configure the DMA controller
and control the data of a DMA transfer simultaneously. This
means that the DMA task can control from where the DMA
controller reads or writes, while the user tasks (Task 1 and
Task 2 in Figure) control what to read or write within their
compartmentalized resources.

Our proposed architecture separates the kernel and the
DMA task (i.e., they run on different threads) because of
two design considerations: first, it maintains the microkernel
architecture of F-MPU with its intrinsic compartmentalization;
and second, it makes the solution more generic and extensible
by developers. The second reason is essential because the
DMA task must implement the drivers for a particular DMA
controller, which is not generic. Also, implementing the DMA
task functionality directly in the kernel will require low-level
development knowledge and precludes the mitigation of the
security risk associated with a larger trusted computing base
(TCB). We will extend our discussion of the TCB in

The downside of this separation is a small overhead due
to the extra SVC (SuperVisor Call) to communicate the DMA
task and the kernel. Regardless of privilege level, the SVC is
mandatory to keep a thread-safe intercommunication through
FreeRTOS primitives. Nevertheless, we demonstrate in
that the overall performance of our solution is adequate for
embedded applications.

B. D-Box MPU region definition

D-Box uses the F-MPU explicit definition of MPU regions
to avoid the inaccuracy and incompleteness of static and
dynamic analysis used by other solutions. The explicit defi-
nitions provide certainty about the resources and permissions
that tasks access during execution time. This characteristic
maintains task’s functionality, assures that the DMA controller
configuration is not inadvertently exposed, and provides the
means to define a deterministic security policy.

The standard F-MPU MPU region definitions are too per-
missive. D-Box redefines these regions, as depicted in Figure
[l to implement a stricter compartmentalization scheme that
is compatible with DMA operations. The new MPU region
definitions and its security properties are as follow:

1) Background region (-1): This region assures that un-
privileged code has no access to any MCU region by default.
Specifically, this region protects any DMA-capable peripheral
that might be exposed by the former region number 3.

2) Syscalls region (0): This region grants unprivileged code
access to valid syscalls entry points (i.e., SVC in Figure f).
The kernel uses it to avoid task code from asking elevation of
privileges from arbitrary code locations—a common symptom
of a control flow hijacking attack. This region is similar to the
former region number O but does not include the task code.

3) Task code region (1): This region isolates the task
code and reduces gadgets for code-reuse attacks. It avoids an
attacker controlling a task to reuse artifacts that could diverge
DMA operations identified on other task codes. Using this
region might require considerable refactoring. Developers will
need to allocate all code and constants accessed during exe-
cution under a single MPU region. However, this is optional,
and developers can define region 1 as the former region 0
to maintain backward compatibility and reduce engineering
effort, as per our design goals.

4) Task stack region (2): This region is not executable to
avoid code injection attacks. It also isolates the stack of a
task from other memory areas. It detects and prevents out-
of-bounds read or write operations. This protection restricts
attacks or crashes within the boundaries of a single task. The
functionality and properties are similar to the former region 4.
Also, this region delineates a valid source or destination for
DMA operations.

5) User-defined regions (3), (4), (5): These regions allow
developers to grant or deny task access to peripheral, RAM,
and flash similar to the former regions 5, 6, and 7. D-Box’s
new region numbering schema prevents user-defined regions
from overriding kernel code and memory regions because of
higher region number precedence. Simultaneously, the user-
defined regions can override the task code, stack, and syscalls
regions to deny access to specific sub-regions. For example, a
task can initialize variables in the stack or access syscalls only
during initialization, and later, use the user-defined regions to
grant read-only permission to initialized variables and block
access to syscalls—this is a characteristic already supported
by F-MPU. Similar to the stack region, user-defined regions
delineate valid source and destination locations for DMA
operations.

FreeRTOS-MPU D-Box
ARMV7-M map Predefined regions ~ User-defined regions Predefined regions User-defined regions
System (-1) P:RW (5) | [6)] ((7) (-1) P-RW @) @] (5
peripherals
0xE0000000
Reserved
Standard (3) PU:RW-XN
peripherals
040000000
Reserved
(4) PU:RW-XN (2) PURW-XN
SRAM Task stack Task stack
(2) P:-RW (7) P-RW
0x20000000 Kernel stack, heap Kernel stack, heap’
(1) PUR
! Task code
Non-volatile (Toa)s':li;)ze |
memory Syscalls QAR
Syscalls
(1) PR (6) P:R
0x00000000 _ [Kernel Code L L L. _|Kemel Code R N I I

Fig. 5: MPU region definitions for F-MPU and D-Box. Ex-
ecution levels: (P)rivileged, and (U)nprivileged. Permissions:
(R)ead, (W)rite, and Execute Never(XN). The highest region
number takes priority when regions overlap.

6) Kernel Code, and stack and heap regions (6, and 7):
These regions protect kernel code and memory from unprivi-
leged access. The kernel’s higher region numbers avoid lower-
numbered regions to override critical sections—an evident
defect in the former schema. The higher region numbers allow
keeping immutable task identification data in kernel space to
support a capability validation schema of DMA operations that

we discuss in

C. DMA controller reconnaissance

D-Box includes as part of its design a manual reconnais-
sance phase of the DMA controller to determine its program-
ming model, number of DMA channels, and critical areas
where the main core stores the DMA controller configuration.
The location is specific to each MCU and might include RAM
and peripheral MMIO areas.

The reason to include this phase is the diversity of MCU
hardware—an issue largely described by the re-hosting re-
search community [26], [43]]. This diversity precludes the use
of compiler-based compartmentalization solutions, or secure
programming languages that simply fall short without a manual
analysis of the MCU hardware. Moreover, the DMA controller
is not the only DMA capable peripheral. Modern MCUs
populate other peripherals that support DMA by themselves,
for example, 2D graphic accelerators [46], USB, and CAN bus
controllers. All of these peripherals require reconnaissance to
keep the properties of the compartmentalization solution.

D. Kernel hardening to support DMA operations

D-Box defines DMA protection rules (extensions) that the
kernel must enforce during the creation of tasks, and the
allocation of memory for the transfer descriptors of the DMA
controller. These rules cannot be implemented in the MPU
because the kernel re-configures the MPU on each context
switch replacing the configuration used by the last task with
the configuration of the currently scheduled task. The general
protection rules are as follows:

e User-defined regions cannot be mapped to the DMA
controller slave interface because it is used for con-
figuration.

e Transfer descriptors must be protected either by the
previous rule or by keeping these data structures in
kernel space.

e The configuration of the DMA controller is only
performed by the trusted DMA task upon a request
and a policy verification.

e The DMA task cannot access the stack of other tasks
or user-defined regions.

e The user-defined regions cannot be mapped to other
task stacks.

The last two rules complement the D-Box MPU region
definitions to avoid user-defined regions from exposing the
stack of other tasks.

E. DMA policy definition

D-Box defines a capability-based security model [31]] for
DMA operations. A capability is an immutable reference to
an object (RAM, peripherals, or flash) associated with access
rights (i.e., read, and write). The possession of a capability
grants the owner (i.e., a task) the defined right to interact with
the object.

We selected the capability-based model because it can
mitigate confused deputy vulnerabilities by design [49]—a
known limitation of ACL-based security models. This type
of vulnerabilities are difficult to mitigate for current com-
partmentalization solutions [20] because of the uncertainty of
resources exposed to each compartment. However, D-Box uses
explicit definition of resources which supports a capability-
based policy for DMA operations on peripherals.

D-Box defines DMA capabilities as a combination of an
on-chip peripheral (i.e., the object) and Extensible Access
Rights (EAR). The EAR includes the standard read and write
permissions, and optional parameters to support the addressing
schema to select off-chip peripherals, as we described in

SIV-Ci

D-Box enforces the DMA policy by verifying the source
and destination for read or write operations. For a write
operation, D-Box verifies that the source (always a buffer)
is contained in the task stack or in any user-defined region,
and that the destination (always a peripheral) is defined in
the capability with the corresponding permission (i.e., write).
Similarly, for a read operation, D-Box verifies that the desti-
nation (always a buffer) is contained in the task stack or any
user-defined region, and that the source (always a peripheral)
is defined in the capability with the corresponding permission
(i.e., read). For FullDuplex operations, D-Box combines
the verification of read and write operations simultaneously.

Notice that a capability does not explicitly define memory
ranges because D-Box uses the—already explicit—task MPU
configurations of the stack and user-defined regions for this
purpose. This characteristic assures that the task has read
or write access to peripherals through DMA, and that the
memory buffers associated with the DMA operations are also

accessible to the task with proper permissions granted by the
MPU. Additionally, the DMA capabilities do not require MPU
region re-definition to access the associated peripheral because
the DMA controller can override the MPU protections. This
property allows the definition of an extensive security policy
with more flexibility that is aware of, but not limited by the
number of available MPU regions.

F. Signal and exception handling

D-Box handles the signals when a DMA transfer finishes,
and the events when a security violations is detected.

1) Signal registration and notification: D-Box defines an
automatic method to register a task for signals or notifications
derived from the DMA controller interrupts (i.e., step 3 of
the DMA life-cycle). The registration occurs after the verifi-
cation of the security policy for a DMA request. Since the
capability-based policy provides certainty about the requester
(i.e., a task), D-Box registers the task exclusively to receive
a notification when a particular DMA transfer finishes. The
notification mechanism manages the Interrupt Service Routine
(ISR) of the DMA controller with a minimum code base
running in privileged mode. After managing the interrupt, D-
Box mechanism notifies the task using the SVC API and drops
its privileges. The number of concurrently-registered tasks to
receive notifications depends on the number of DMA channels
supported by the DMA controller. Technically speaking, each
DMA channel serves a single request associated with a unique
task. D-Box assures proper resource management according to
the characteristics of the DMA controller that were obtained
by the reconnaissance phase.

Since FreeRTOS-MPU does not provide any specific inter-
rupt management system, developers can implement notifica-
tion mechanisms similar to D-Box for other system interrupts.
The primary consideration is that the core processor always
executes the ISR in privileged level. Therefore, the ISR has
to be trusted and its execution deprived of privileges before
returning control to the tasks.

2) Exception handling: D-Box exception handling con-
tains faulty operations in the boundaries of a task without
affecting other task operations. D-Box considers three types
of exceptions: faulty DMA requests, overlapped user-defined
regions on stack or DMA controller, and MPU region viola-
tions. Only the MPU region violation will trigger a hardware
exception—the other two are managed entirely in software.

The first type of exception occurs during the validation of
the DMA request parameters. If the request violates the secu-
rity policy, D-Box rejects the request and notifies the requester.
The requester task should implement a method to handle the
rejection notification, and continue its execution. The second
type of exception can occur during initialization/creation of a
task, or during its execution when a task requests to redefine
the MPU regions. If the task is already running, D-Box ignores
the request to redefine the MPU regions, returns an error
message, and lets the task continue its execution. If the task is
not running, D-Box voids the initialization/creation of the task
and clears it from the scheduler. The third type of exception
occurs because of mismatches or permission violations of the
MPU regions. D-Box considers this type of exception severe.

Hence, it will stop the offending task, and remove it from the
scheduler, keeping the rest of task running.

VI. IMPLEMENTATION

We implemented a D-Box prototype for the official Cortex-
M3/M4 port of FreeRTOS version 10.4.1. Our implementation
is divided into kernel hardening and extensions, and a priv-
ileged task that manages the DMA transfers to override the
MPU protections according to the security policy of D-Box.

In this section, we refer to the core FreeRTOS kernel and
the port layer for the Cortex-M as the “kernel” code. Also,
we refer to the MCU vendor-specific code as the “drivers”.
Our prototype targets the popular STM32 MCU family of ST
Microelectronics for the vendor-specific sections. However, the
kernel changes, API, and functions are vendor-agnostic, and
compatible with any Cortex-M3/M4 MCU.

Our complete prototype includes three lines of assembly
language (for the highly-optimized context switch routine),
1200 lines of C code for the DMA task, drivers and ISR, and
220 lines of C code for the kernel modifications.

A. Kernel hardening and extensions

We modified the F-MPU kernel to support an extra pre-
defined MPU region per task according to region number 1
in Figure 5] With this modification, each execution of the
context switch routine configures the MPU to grant access to
the task stack, task code, and the three user-defined regions.
The regions for the kernel data, kernel code and syscalls are
configured once, and maintained during the entire firmware
execution.

We extended the structure of the Cortex-M Thread Control
Block (TCB) to store a pointer to an array of capabilities for
the security policy. This array is a structure passed as a pa-
rameter during the initialization of the tasks. Every capability
entry in the array contains a peripheral ID (i.e., the physical
address of peripheral), a bit field for granted rights flags (e.g.,
Read, Write, FullDuplex), and an option field for the off-chip
addressing schema, which is peripheral-specific.

Listing 1: Capabilities defined in C code structures

1 static const PeripheralPermission_t xPermission [port TOTAL_NUM_PERMISSIONS] =
2

3 {(uint32_t *)SPIl, (eRead | eWrite | eFullDuplex), SS_FRAM_ },

4 {(uint32_t #)I2C2, (eRead | eWrite | eFullDuplex), 0x08 3.

5 {(uint32_t *)ADCI, (eRead),(ADC_CHANNEL 0 | ADC_CHANNEL_4) }

6 ;

We used simple C language structures to define the capa-
bilities because F-MPU uses similar structures for the user-
defined MPU regions. Hence, developers are familiar with
them. Also, this scheme saves memory resources without
requiring a parsing routine for more sophisticated formats (e.g.,
json) that would increase the footprint of the solution.

We defined all the kernel changes and extensions with pre-
processor C directives to allow the activation or deactivation
of D-Box in the original FreeRTOS configuration file. Our
changes are also backward compatible with applications de-
veloped for the standard F-MPU. For example, developers can
choose to use exclusively the user-defined regions to access
peripherals and the required memory areas according to the
restrictions implemented in the kernel.

INT

DMA Ctrl ®
@ Request Queue @ s @
Task \ Do \ DMA Task } w0l > Peripherals™ | | »{ ISR
Notification
[svel
T

Fig. 6: D-Box implementation including the data flows, the
independent channel created by the DMA controller, and the
notification mechanism.

B. The DMA task and data flow

The DMA task (@) in Figure [6) is a trusted privileged task
that manages DMA requests from other tasks ((D in Figure [6)).
The main functions of the DMA task include the validation of
the DMA request, the configuration of peripherals including
the DMA controller, and the registration of the requesting task
for the notifications. The ISR handles the interrupts from the
DMA controller and other peripherals (3) and @) in Figure 6)
and delivers the notification to the requesting task.

The DMA task and the ISR use exclusively standard FreeR-
TOS primitives (i.e., queues, and notifications for Inter-Process
Communication (IPC) through the FreeRTOS SVC interface).
This implementation decision assures two properties: First,
the IPC is thread-safe. Second, developers can extend D-Box
with more peripheral drivers and functionalities without the
knowledge of low-level kernel development.

VII. EVALUATION

We evaluated D-Box to answer the following questions:

1) What is the attack surface of an application that
supports DMA through D-Box procedures? How does
our solution compare to F-MPU and other similar
solutions?

2) What is the impact of D-Box in terms of performance,
memory usage, and power consumption for embed-
ded applications?

3) What are the security and operational benefits of D-
Box for real-world embedded applications?

To answer Question 1), we performed a qualitative and
quantitative security analysis of D-Box in For Ques-
tion 2), we conducted performance, memory, and power anal-
yses in §VII-B] §VII-D] and §VII-C|, respectively. Finally, we
answer Question 3) and present in an end-to-end case
study that reveals a DMA-enabled compartmentalization solu-
tion with negligible overhead and reduced power requirements
for real-world applications.

Besides the specificities of each subsection, the common
characteristics of our setup environment are as follows:

e Development board: ST NUCLEO-L152RE.

e MCU: STM32L152RE Cortex-M3@32Mhz, 512kB
flash, 80kB RAM, 154kB peripheral MMIO, 2 DMA
controllers.

o OS: FreeRTOS 10.4.1

e MPU: 8 regions, 32 bytes minimum region size.

e Peripheral operations: read and write operations on
12C, USART, SPI and ADC peripherals.

A. Security analysis

1) Security metrics: Based on the least-privilege design
goal, well-known defense mechanisms, and the security frame-
work BenchloT [10], we defined the following quantitative and
qualitative metrics to assess the security properties of D-Box:

e Memory region ratio: is a metric that measures the
effectiveness of the compartmentalization of MCU re-
sources by computing the ratio of the size of memory
areas exposed during a task’s execution slot to the total
size of each memory area of the MCU (i.e., RAM),
flash and peripherals. A lower ratio represents a better
compartmentalization.

e Number of ROP gadgets: this metric computes the
number of code snippets exposed in flash for ROP
(i.e., return oriented-programming) attacks during a
task’s execution slot. A lower number of ROP gad-
gets reduces the attacker’s capability to hijack task
execution, and perform arbitrary actions on the MCU.

e Data execution prevention: is a security mechanism
that enforces the WX principle. This mechanism
precludes the execution of data (payloads) controlled
by an attacker.

e Code execution level segregation: is a security
mechanism that differentiates and limits the access to
system-critical resources.

e Stack protection: is a security mechanism that detects
and prevents operations outside the boundaries of
the task stack. This mechanism prevents a faulty or
compromised task from writing or reading beyond the
limits of the task’s stack, but it does not detect stack
corruption within the valid boundaries.

o Extensible Access Rights (EAR): is a security mech-
anism that allows defining security policies for off-
chip peripherals for DMA operations.

2) Quantitative security analysis: In this section, we ana-
lyzed quantitatively the memory region ratio and the number
of ROP gadgets for an unprivileged task (i.e., user task)
running on F-MPU and D-Box. We considered the regions
and subregions of flash, RAM and peripherals, and measured
the standard and the worst-case scenarios for each tool. The
standard scenario corresponds to a configuration that does not
use any of the MPU user-defined regions, whereas the worst-
case uses the MPU user-defined regions to expose all possible
memory regions to the user task (i.e., maximum exposure).

For the analysis of the number of ROP gadgets, we further
divided the flash region into syscalls, kernel, drivers, libc,
DMA routines and the user task. To identify the ROP gadgets,
we used Ropper [57]. To map the location of ROP gadgets
with the code subregions, we used the reverse engineering tool
Ghidra [50].

The result of our analysis (Table [I) demonstrates that the
standard configuration of D-Box can reduce the region ratio

F-MPU D-Box
Region Subregion Std. [%] W-C [%] | Std. [%0] W-C [%]
Kernel 0 100 0 0
Flash Syscalls 100 100 100 100
User space 100 100 1 100
Kernel 0 100 0 0
RAM User space 6.5 100 6.5 87
Sys. periph. 0 0 0 0
Peripherals | Std. periph. 100 100 0 98.7
DMA controller | yes yes no no

TABLE I: Memory region ratio for Standard (Std.) and worst-
case (W-C) configurations of an unprivileged task running on
F-MPU and D-Box. Lower values represent a better protection
according to the least-privilege principle.

F-MPU D-Box
Location | Avl. [#] Std. [#] W-C [#] Avl. [#] Std. [#] W-C [#]
Syscalls 7 7 7 7 7 7
Kernel 11 0 11 11 0 0
Drivers 142 142 142 142 0 142
Libc 365 365 365 365 0 365
DMA task | n/a n/a n/a 10 0 10
User task |6 6 6 6 6 6
Total 531 520 (98%) 531 (100%) | 541 13 (2.4%) 530 (98%)

TABLE II: Number of ROP gadgets available (Avl.) and
exposed on specific sections of the flash for standard (Std.)
and worst-case (W-C) scenarios. A lower number of gadgets
represents a better protection and fewer chances of code-reuse
attacks.

to 0% and 1% for standard peripherals and user space flash
respectively, compared to F-MPU. Also, D-Box assures (either
by MPU region number precedence, API filtering, or security
policy) that the kernel, the DMA controller, and the DMA
task’s stack are always protected as security critical regions.
Conversely, the analysis result exposes a faulty design of the
original F-MPU that allows exposing 100% of the kernel to
unprivileged tasks through user-defined regions. It is worth
noting that accessing system peripherals always requires priv-
ileged level of execution, even when the MPU is disabled or
unavailable [42]. This is reflected in our results showing both
solutions blocking the access to system peripherals regardless
of the MPU user-defined regions.

D-Box exposes only 2.4% (13) of the total number (541) of
ROP gadgets for its standard configuration — i.e., 41 times less
than F-MPU (Table [MI). The reason for this drastic difference
is the absence of drivers in user space because D-Box accesses
peripherals through the kernel primitives (syscalls) and the
DMA task that has access to the drivers. Also, D-Box provides
the MPU region number 1 to grant access only to the task’s
code — which does not include libc — the highest contributor
of ROP gadgets according to our analysis. However, we
consider that libc is an standard resource used by tasks on
real embedded applications. Adding libc to the standard D-
Box configuration will expose 71,7% of ROP gadgets, which
is still 24.4% less than F-MPU.

3) Qualitative Security Analysis: D-Box inherits many
security properties from F-MPU, and it adds distinctive pro-
tections to support DMA. As described in Table the DMA
protection is also partially supported by TockOS and uVisor,
whereas the capabilities with EAR for off-chip peripherals is
only supported by D-Box.

Security feature | uVisor TockOS EPOXY MINION ACES F-MPU D-Box
Code isolation o X o X X o X0
Data isolation X X o X X X X
Periph. isolation X X0 o X X X X
DMA protection | xo X0 o o o o X
DEP X0 X X X X X X
Exec. level seg. X X X X X X X
Stack protection X X X X X X X
Capability EAR o o o o o X

x = Yes, o = NO, xo = partial/optional

TABLE III: Comparison of security features supported by D-
Box and related tools.

D-Box keeps each task stack in an independent MPU
region during its execution. This configuration detects and
prevents buffer overflows that may affect surrounding memory
areas, but it cannot prevent stack corruptions within the MPU
region. The same consideration is maintained for the DMA
operations. In this case, a wrong or malicious DMA transfer
request can corrupt the stack of the requesting task or the
user-defined regions, but D-Box’s immutable capability-based
policy assures that the DMA transfer will only affect the
requesting task resources. This characteristic, accompanied by
the explicit declaration of resources, mitigates the firmware
defects described in our threat model, even when the attacker
controls the code of a task.

Finally, D-Box supports the protection of DMA with EAR
for I12C, SPI and ADC peripherals. This characteristic extends
the granularity of the security policy beyond the boundaries of
on-chip peripherals, which is not supported by other solutions
at all. D-Box does not overload the DMA operation. Rather, it
simply enforces the security policy on mandatory configuration
parameters that, otherwise, are written on the DMA controller,
or managed by critical routines without a systematic verifica-
tion.

B. Performance analysis

In this section, we present micro and macro benchmarking
used to measure D-Box’s overhead on kernel and common
peripheral operations, respectively.

1) Micro-benchmarking: This analysis shows the overhead
of D-Box on specific kernel operations, including the context
switch routine, task creation syscall, and DMA validation.

Setup: we measured the overhead introduced by D-Box
using the Cortex-M’s cycle count register of the Data Watch
Point and Trace Unit (DWT) [11]. We manually added in-
strumentation to obtain the number of cycles used in each
operation. We took 10 samples and averaged the number of
cycles for each operation.

Results: D-Box adds a reasonably low overhead to the
context switch routine (i.e., 1.74% as described in Table
due to the extra MPU region (Task code in Figure [5) modified
on each context switch. Also, the creation of tasks shows a
linear overhead O(n) because of the validation of each task’s
stack and user-defined regions against previously-created tasks,
and the DMA controller regions. This validation occurs once
during task creation, and does not affect the task at execu-
tion time. D-Box uses on average 657 cycles for the DMA
transfer validation. This validation overhead differs between

F-MPU D-Box Overhead

Parameter [# cycles] [# cycles] [%]
Context switch 287 292 1.74
Task creation 0 12730 13047 2.49
Task creation 1 12730 13332 4.73
Task creation 2 12730 13617 6.97
Task creation 3 12730 13902 9.21
DMA validation Min. | n/a 569 n/a

DMA validation Avg. |n/a 657 n/a

DMA validation Max. | n/a 792 n/a

TABLE IV: D-Box micro-benchmarking for context switch,
task creation and DMA transfer validation.

peripherals and operations because of the EAR support for
off-chip peripherals. We observed the higher overhead on the
I2C operations that need the addressing schema of EAR, and
the lower overhead on USART operations that do not use this
schema.

2) Macro-benchmark of peripheral operations: To under-
stand the overall effects of D-Box on peripheral operations, we
measured and compared the overhead and the core processor
usage when a task read (RX) or write (TX) data streams
on peripherals using pooling, interrupts, and insecure DMA
methods (i.e., we looked at the three possible methods used
by firmware to communicate with peripherals).

Setup: for pooling, interrupt and insecure DMA methods,
we configured F-MPU with user-defined regions granting
access to the tested peripheral and the DMA controller. For
D-Box, we configured it with a capability granting read or
write privileges on the tested peripheral. We simulated diverse
conditions by reading or writing data streams ranging from 1
to 100 bytes on USART, I2C, and SPI peripherals. In the case
of ADC, we performed conversions ranging from 1 to 100
samples on different channels. For each data length/sample
size, we collected the overhead 10 times and averaged the
result. For I2C and SPI, we used an extra development board
connected as a dummy slave to our tested device. For USART,
we used our workstation connected to the development board
through the ST-Link USART bridge.

We measured the overhead by counting the number of cy-
cles using similar instrumentation as described in To
measure the core processor usage, we used more sophisticated
instrumentation provided by Percepio Tracealyzer [56]. We
also added a secondary communication channel between the
MCU and our workstation through a USART and a USB-to-
USART bridge. We used this channel for synchronization and
collection of our experiments’ results.

Results: the performance overhead of D-Box is inversely
proportional to the data length. In Figure [/} we observe that
the overhead can be as high as 134% when transmitting a
single byte through SPI (SPI TX), and, in the same operation,
the overhead is below 10% and trending towards zero when
transmitting 50 or more bytes. The reason for this behavior
is the costly initialization of a DMA transfer. This initializa-
tion includes the policy verification and the DMA controller
configuration per transfer (i.e., that the overhead is constant
and added per transaction, and not per byte). In the case of
ADC, D-Box presents a small positive overhead (4.71% on
average) only when compared to the insecure DMA method.
The reason for this behavior is the highly-DMA-optimized

USART TX USART RX

46 1

231 0]

01

50
SPIRX

100
SPITX

134

N
] 62 :¥

01 T
50 100 0

67

50 100

12CTX 12CRX

56.5 1

o

0.0

50 50

ADC

0
87 —— D-Boxv. IT
D-Box v. Pool
01
0

—— D-Box v. DMA

—871

50 100

Fig. 7: Performance overhead [%] of D-Box versus Interrupt (IT), Pooling (Pool) and Insecure DMA (DMA) methods for TX
and RX operations ranging from 1 to 100 bytes length, or 1 to 100 samples for ADC. Figure shows a relatively high overhead
for small transfer size and low or negative overhead for larger transfers.

. D-BOX Pool 1T DMA
Operation %] %7 A %l A %] A
USART TX | 13.5 68.5 -55.0[32.6 -19.1[124 1.1
USART RX | 13.3 80.6 -67.3|13.5 -02 109 24
SPI TX 18.6 45.6 -27.0(49.8 -31.2|14.0 4.6
SPI RX 18.1 455 274|652 -47.0(14.0 4.2
I2C TX 17.5 40.5 -22.9(52.8 -353|158 1.7
I2C RX 17.8 40.1 -22.3|54.7 -37.0|21.6 -3.8
ADC 20.3 499 -29.6|86.1 -65.8|16.6 3.7
Average 17.0 529 -359[50.7 -33.7[15.0 2.0

TABLE V: Core processor usage [%] for peripheral operations
relative to the total core capacity. Lower values mean better
management of tasks and guarantee of timing constraints. A
is the processor usage difference compared with D-Box.

ADC peripheral populated on our tested MCU. Without DMA,
the ADC operations suffer a considerable overhead for IT and
Pool methods. The USART RX operation is also a particular
case because our workstation’s jitter disguises the overhead
of D-Box. The workstation’s timing is not comparable to a
real-time device such as the used MCU. We include complete
details of the maximum, average and minimum performance
results in appendix §C|

D-Box maintains the scheduler timing constraints adding
only 2% of core processor usage compared to insecure DMA
on average. Also, it reduces core processor usage by 35.9% and
33.7% compared to pooling and interrupt methods, respectively
(Table [V). The considerable reduction of core usage for both
DMA methods is due to the DMA controller taking care of
the data movements between peripheral and RAM on behalf
of the core processor.

C. Power analysis

Setup: For this analysis, we used the same software setup
of but without the instrumentation. We only kept the
secondary USART channel for synchronization purposes. For
each test, we modified the firmware to configure and provide
power exclusively to the tested peripheral and the secondary
USART channel, keeping the rest of the tested peripherals un-
powered. We executed the Read/Write operations for USART,
I12C, SPI, and ADC, ranging from 1 to 100 bytes/samples
in a continuous loop while taking samples of current and
voltage every 100 ms, totaling 1000 samples. To measure
the current and voltage, we used the highly accurate power
monitor INA226 [35] connected to our workstation through
the USB-to-I12C bridge MCP2221A [44]. We configured the
electrical connections of the INA226 and the development

10

Operation D-BOX Pool IT DMA
[mW] | ImW] A [%]] [mW] A[%][[mW] A [%]

USART TX |31.0 379 -18.3 38.1 -18.8 38.7 -19.9
USART RX | 30.4 37.2 -18.3 37.6 -19.1 38.8 -21.6
SPI TX 31.1 35.8 -13.2 37.1 -16.3 37.5 -17.1
SPI RX 31.0 36.9 -15.9 37.1 -16.6 36.3 -14.8
12C TX 31.5 37.9 -16.8 38.1 -17.3 38.1 -17.3
12C RX 31.6 37.7 -16.2 38.1 -17.0 383 -17.4
ADC 31.8 36.2 -12.0 38.6 -17.4 394 -19.2
Average 31.2 37.1 -15.8 37.8 -17.5 38.1 -18.2

TABLE VI: Average power [mW] required for peripheral
operations. A [%] is the relative power usage difference
compared with D-Box.

board to measure exclusively the current and voltage applied
to the STM32L152RE MCU.

Results: D-Box reduces the power requirements on average
15.8%, 17.5%, and 18.2% compared to pooling, interrupt,
and insecure DMA methods, respectively (Table [VI). The
result of insecure DMA seems counter-intuitive at first glance
since it is expected to reduce power consumption compared
to IT and Pool methods. However, we determined that the
vendor’s DMA HAL (Hardware Abstraction Layer) used for
insecure DMA is not power efficient. On the other hand,
D-Box implementation uses the DMA driver directly and
replaces the HAL with the DMA task of our design. Our lean
implementation demonstrates that DMA can be secure, and
significantly reduce power consumption—a highly desirable
characteristic for embedded and IoT applications. We include
a graphic representation of our results in appendix

D. Memory overhead analysis

Setup: To analyze the D-Box memory overhead, we com-
pared the firmware images of F-MPU and D-Box used in
We also break down the specific requirements of our
prototype implementation. We compiled all images with no
optimization (-O0) using the GNU Tools (release 7-2018-q2)
included in the CubelDE version 1.5.0.

Result: D-Box, on average, reduces the usage of flash and
RAM by -0.12% and -0.07%, respectively (Table [VII). This
reduction is due to differences in vendors’ driver libraries.
F-MPU uses a feature rich HAL library, whereas D-Box
uses “low-level” drivers. Note that the RAM requirements
are constant for both systems. This is because FreeRTOS
reserves and manages its heap statically (i.e., D-Box’s RAM
requirements are part of the already reserved heap observ-
able by the compiler). Besides this FreeRTOS characteristic,

RAM [kB] Flash [kB]
Peripheral | F-MPU D-Box A [%]|F-MPU D-Box A [%]
USART 40.61 40.58 -0.07 [129.68 129.7 0.02
12C 40.61 4058 -0.07 |128.66 128.98 0.25
SPI 40.61 4058 -0.07 |128.34 128.32 -0.02
ADC 40.61 4058 -0.07 |129.45 128.05 -1.08
Average [40.61 40.58 -0.07 [129.03 128.88 -0.12

TABLE VII: D-Box RAM and flash overhead compared to
F-MPU.

RAM [Bytes] Flash [Bytes]
Privileged Data 230 -
DMA request queue | 320 -
System calls - 916
DMA task 1024 1648
TCB capabilities - 36
Total 1574 2600

TABLE VIII: D-Box RAM and flash requirements

Table details mandatory and driver-independent memory
requirements of our D-Box prototype implementation. Notice
that D-Box RAM and flash requirements depend on the number
of channels supported by the DMA controller and the number
of policy’s capabilities, respectively. In our prototype, the
security policy supports 3 capabilities that require 36 bytes
in total (12 bytes per capability). In terms of RAM, the DMA
request queue needs 320 bytes (32 byte per DMA channel).

E. Case study: Securing a Programmable Logic Controller

In this section, we present a representative case study that
demonstrates how D-Box can improve the security, perfor-
mance and power consumption in a real-world scenario.

1) Programmable Logic Controllers: PLCs are embedded,
ruggedized computers used in industrial environments to con-
trol critical processes. These devices operate continuously,
assuring availability, reliability and performance. Due to PLC’s
relationship with critical infrastructure, these devices have been
the targets of numerous cybersecurity attacks; usually, resulting
in devastating damages [24], [25], [34], [19].

The PLC analyzed in this case study is the Wecom LX3VM
2424M [6]. This PLC has been used in water supply facilities
[7]], poultry processing plants [5]], refrigeration applications [4],
and small machines as we describe next.

2) Firmware characteristics: The firmware used in this
section contains open source libraries and a subset of propri-
etary code that we acquired from an industrial connection. We
adapted the code to run on our development board instead of
the original PLC to facilitate metrics evaluation. Nevertheless,
the PLC and our development board integrate similar MCUs
from ST Microelectronics.

The PLC firmware uses FreeRTOS to implement a motor
control system for an automatic molding injection machine—
this is an in-house development that replaced the original
firmware provided by the PLC vendor. This firmware scans
inputs from a rotary encoder (speed feedback), thermocouple
conditioner (temperature), and push buttons (local activation).
It then executes a PID (Proportional-Integral-Derivative) con-
trol loop, and updates the output using PWM (Pulse-Width
Modulation) to activate the motor drive () in Figure [8). The

11

firmware also integrates the Modbus RTU protocol for remote
communication with an SCADA (Supervisory Control And
Data Acquisition) system ((D in Figure [8). The PLC has a 10
ms scan cycle (i.e., scanning inputs, executing control logic,
and updating outputs must occur every 10 ms).

3) Threat analysis: The original firmware is insecure be-
cause it does not enforce the least privilege principle. The
tasks have access to all data, code and peripherals. There is no
distinction between kernel and user space. A bug or a backdoor
in the Modbus protocol, for example, can be exploited remotely
by an attacker (3 in Figure [8) to hijack the PLC operation
and perform malicious actions, causing destruction of facilities,
economic loss, or even personal injury.

4) Solution: We compartmentalized the PLC firmware by
porting it to D-Box using two unprivileged tasks, and with
minimal engineering effort. First, we modified the Modbus
protocol to run in an unprivileged task using two user-defined
regions and a single DMA capability granting read and write
rights on USART. The user-defined regions contain the Mod-
bus protocol handlers, and a shared region between the PLC
task and the Modbus task. Second, we modified the PLC
scan cycle to run in an unprivileged task using three user-
defined regions, a DMA capability and an ISR. The first user-
defined region is the shared region with the Modbus task. In
this region, the PLC task safely exposes data to the Modbus
protocol. The second and the third user-defined regions grant
access to the Timer 1 and GPIO peripherals, respectively. The
DMA capability with EAR grants read access to the off-chip
thermocouple conditioner connected through SPI using DMA.

5) Evaluation and analysis: We tested the PLC firmware
in our development board connected to our workstation, simu-
lating the SCADA system with a Modbus client. The SCADA
system sets the PID control loop parameters and the motor
speed on the PLC (development board). Then, the SCADA
system continuously monitors the speed and temperature of
the motor through the Modbus protocol. We collected security,
performance, and energy metrics using similar procedures as

described in §VII-B] and §VII-C|

D-Box improves the PLC security properties, maintains the
real-time constraint, and reduces the power and CPU usage as
detailed in Table Remote attacks exploiting vulnerabilities
in Modbus are contained and will only affect the Modbus
task. The compartmentalization will keep the critical PLC task
working even when an attacker takes control of the Modbus
task and misuses its DMA capability. This case study demon-
strates that by securely using the DMA controller, is possible
to protect MCU resources while maintaining or improving the
performance and power requirements of a practical embedded
application.

VIII. DISCUSSION

A. The capability-based security model properties and its
limitations

The capability-based security model assures two properties:
1) the deputy (DMA task) has no rights to the resources that
are affected by a DMA transfer, and 2) it guarantees that a task
cannot request DMA operations on a resource without proper
rights.

FreeRTOS D-Box A
Flash ratio [%] 100 52 -48.00
RAM ratio [%] 100 2520 -74.80
Peripheral ratio [%] | 100 0.32 -99.68
ROP gadgets [#] 0 0 0
Avg. Scan cycle [mS] | 9.99 10 0.01
Avg. power [mW] 41.38 3494 -15.56
CPU usage [%] 16.79 1296 -3.83

TABLE IX: Evaluation of PLC firmware implementing D-Box
compartmentalization. Lower ratio and ROP represents a better
protection. A calculated as absolute difference for percentages,
and as relative difference for other units.

L‘lg v

7 ®¢§;}

{ !

(Modbus

PLe
I

SCADA

Fig. 8: Compartmentalization of a PLC-Based motor control
system. () Modbus protocol for SCADA monitoring, (2) Push
buttons, thermocouple, motor drive and encoder connected to
on-chip peripherals, (3) Attacker abusing the Modbus protocol.

Since the resource and its rights are inseparable, immutable
and owned by an identifiable task, it is possible to avoid
confused deputy problems that can affect DMA operations
by design. However, it is still possible to write insecure
applications canceling any of the properties of the capability-
based model. For example, if two mutually independent func-
tionalities with different security profiles are structured as a
single task, there is no way for the DMA task to discriminate
the “correct” rights on resources. Clearly, this example is an
obvious design error. At the same time, it is common to find
these insecure implementation patterns affecting more than just
the DMA operations.

B. D-Box trusted computing base

D-Box TCB includes the kernel, the DMA task (drivers
and addressing routines) running at the privileged level. This
characteristic requires special care because of the associated
risk with a relatively large code base.

D-Box’s separation of the DMA task and kernel supports
running the DMA task in unprivileged mode by design, thus
mitigating its associated risk. However, running the drivers in
unprivileged mode, with only three MPU user-defined regions,
requires considerable engineering effort and would make the
solution vendor-specific. Regardless of the engineering effort,
developers should consider running the DMA task in unprivi-
leged level when the risk profile of the embedded application
requires the highest protection.

12

C. The ARMvS-M security extensions

The ARMv8-M includes hardware support to mitigate
many of the issues related to multimaster environments, in-
cluding DMA. Notably, this architecture provides a bus-level
security feature that can verify and propagate the permissions
for each bus operation. In this case, the properties of memory
regions are enforced system-wide and not exclusively on a spe-
cific master interface [§]]. In addition, ARMv8-M provides the
newly added “Test Target” (TT) instruction. This instruction
accelerates the verification of security access permissions of
memory ranges, which is essential to validate DMA operations.

The new system-level security accompanied by TrustZone
and a more flexible MPU of the ARMv8-M bring tremendous
security improvements as well as performance for low-end de-
vices. Especially when compared to software-based solutions
like D-Box. Nevertheless, the design considerations of D-Box
are still helpful to implement secure firmware architectures that
take advantage of the new hardware security features.

D. Compatibility of D-Box with other solutions

D-Box procedures can be applied to other compartmen-
talization solutions that define the same compartmentalization
unit (granularity) and implement RTOS designs. For example,
MINION [36] defines its memory view at a thread level,
and it is built on top of NuttX RTOS. On the other hand,
solutions such as ACES [20] are not directly compatible (i.e.,
ACES defines compartments at a function level for firmware
implementing baremetal designs). This last design makes it
very challenging to validate sources and destinations for DMA
operations because the compartment views are the result of an
algorithm that does not capture the semantics of operations
occurring on a different master (i.e., the DMA controller).

IX. RELATED WORK

Our work intersects DMA protection and resource com-
partmentalization in embedded devices.

A. DMA protection

Existing works ignore or are limited in supporting se-
cure DMA transfers in embedded devices. EPOXY [21]] does
not consider DMA as a security-sensitive operation, and its
method automatically elevates privileges when accessing a
peripheral like the DMA controller. TockOS [40] and uVisor
[12] acknowledge the security-critical behavior of the DMA
controller, but provide only partial support for secure DMA
transfers. TockOS uses the MPU to enforce memory access,
and leverages Rust safe types to protect the DMA controller.
However, TockOS does not consider the DMA descriptors
stored in RAM, which conversely, D-Box protects as se-
curity critical structures. uVisor [12] recommends enforced
access to the DMA controller through SVC-based APIs, but
this reference design is deprecated. Trusted Firmware-M [63]]
works in a similar fashion and targets exclusively TrustZone-
enabled devices (ArmV8-M) or dual-core enabled devices.
D-Box targets ArmV7-M devices and considers multimaster
environments.

To protect DMA as a general master I/O device, Haglund
et. al presented a mechanism [29] based on a runtime monitor

to isolate I/O devices from accessing sensitive memory regions.
Haglund’s work is limited to NIC operations over DMA. In the
context of general purpose computers, several works [64], [68]],
[671], [65] presented security policies and protection strategies
on secure access of master I/O devices. Compared to D-Box,
these works do not consider the hardware availability and
constraints of embedded devices. Prior work has also consid-
ered DMA implications in the security of remote attestation
[51]], the integrity of software execution [52], and undetectable
firmware modifications through DMA abuse [53]]. These works
require small hardware modifications, but, similarly to D-
Box, they expose the need to systematically protect DMA
to guarantee the operation and security of deeply embedded
devices.

B. Compartmentalization

1) Software-based memory compartmentalization: Existing
works [21], [20], [30] leverage embedded compilers to create
two or more isolated execution environments. EPOXY [21]]
overlays the MPU to enforce different permissions and execu-
tion levels. It creates two distinct domains based on the execu-
tion levels. However, EPOXY requires manual annotations and
the execution levels cannot be statically identified. ACES [20]
creates an instrumented binary to enforce runtime compart-
mentalization. Similar to D-Box, ACES also takes a developer-
specified policy. However, ACES requires a complex graph
traversal algorithm for policy definition. In contrast, Hardin et
al. [30] leveraged compiler-inserted code to achieve runtime
bound-checking. This technique is based on AmuletOS [32],
and it can reduce runtime overhead in dynamic checking. How-
ever, it still depends on language features and clear OS rules.
NesCheck [48] provides compartmentalization by extending
the existing TinyOS compiler toolchain [23] with LLVM-based
passes, and focuses on runtime checks on nesC programs.
Compared with D-Box, compiler-based compartmentalization
may involve imprecise analysis to form compartments and
cumbersome policy definitions. D-Box makes it easy to define
static policies by developers.

Without leveraging compilers, TockOS [40] divides the
kernel into a trusted core for critical tasks, and a non-trusted
capsule for peripheral drivers and non-system-critical tasks.
MINION [36] constructs a per-process memory view by an
offline clustering analysis on the system firmware. MINION
is similar to D-Box in using a thread/task as the unit of
compartmentalization. However, MINION is inaccurate in ap-
proximating the resources required for each thread. MINION’s
inaccuracy can lead to unexpected crashes in production envi-
ronments, whereas D-Box explicit resource definitions assure
application functionality and security.

In addition to MPU-assisted compartmentalization, the
uXOM [38] uses unprivileged memory instructions to enable
efficient execute-only-memory protections on ARM Cortex-M
devices. Mate [39] isolates applications through virtualizing
the single memory space. SANCTUARY [16] leverages ARM
TrustZone Address-Space Controller to enforce hardware-level
isolation. These solutions rely on specific hardware, or provide
orthogonal protections that can be integrated in a compart-
mentalization solution where D-Box is implemented. In the
context of general purpose computers, existing works [[18]], [33]
provide programming primitives to divide and control accesses

13

to the memory. Shreds [I8] isolates fine-grained program
segments from others in the same process. It uses the compiler
toolchain and the OS module to enable the segment execution.
SMV [33] aims at per-thread access control, and divides the
virtual memory into multiple domains, and enforces the least
privilege principle. Compared to D-Box, these solutions will
need to resolve the performance and hardware constraints
before they can be applied to embedded devices.

2) Hardware-assisted memory isolation: Existing works
extend hardware to improve memory isolation. Strackx et. al
[62] presented self-protecting modules (SPM) to isolate trusted
subsystems sharing the same processor and memory space.
They created three hardware instructions to manage the SPM,
and provided a memory access control model for subsystems
using the program counter. However, SPM must exclude pro-
tected memory locations that are accessed by DMA. Toubkal
[59] enhances the MPU by adding a new hardware layer to
create different access environments for different hardware
components. Trustlite [37] presents an execution-aware MPU
(EA-MPU) to execute trusted modules. It extends the MPU
by providing a means to link code regions to data regions,
and validate the address of the executing instruction. Trustlite
can isolate data of each module from the other parts of
the program. TyTan [[I7] also protects the memory with an
EA-MPU. It isolates tasks with a secure IPC proxy task.
Hardware-assisted implementations allow more flexible MPU
configuration and better interrupt handling. However, these
solutions usually target the generic memory compartmentaliza-
tion problem, without considering developer-supplied policies
nor the least privilege principle. The changes to the hardware
are also not available on commercial devices. In contrast, D-
Box only uses standard and broadly available hardware.

In the context of x86 CPUs, existing works [66] leveraged
various mechanisms for memory compartmentalization and
protection, including MMU, MPK, Intel management engine,
and Intel SGX. For example, IMIX [27]] provides a lightweight
in-process memory compartmentalization. It extends the x86
ISA with a security-sensitive memory-access permission. Un-
like D-Box, these solutions are not available on low-end
hardware of embedded devices.

X. CONCLUSION

In this paper, we presented D-Box, a systematic approach
to enable secure DMA operations for compartmentalization
solutions of embedded applications—a problem that has been
largely ignored that we analyze and expose. D-Box defines a
reference architecture and a workflow to holistically protect
the DMA life-cycle. D-Box uses a capatibility-based security
model to provide strong protections, and pragmatic methods
to define a DMA policy compatible with MCU software and
hardware constraints.

To evaluate a prototype of D-Box implemented on top of
F-MPU, we performed qualitative and quantitative analyses
of different benchmark programs. Our results show that D-
Box provides secure DMA access while reducing the attack
surface of F-MPU for all the 6 security metrics that we used.
D-Box incurred a low overhead for kernel and peripheral
operations while reducing the overall power requirements. By
testing on a real-world PLC application, we further confirmed

D-Box’s security improvement, low overhead, and reduced
power consumption thanks to its support for secure DMA
transfers, and a lean implementation. Lastly, we discuss D-
Box’s limitations and its compatibility with existing security
solutions.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and our shepherd Ivan De Oliveira Nunes for their insightful
comments. This project was supported by the National Science
Foundation (Grants#: CNS-1748334, and CNS-2031390), and
the Office of Naval Research (Grant#: N00014-18-1-2043).
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the views of the funding agencies.

REFERENCES

[1] Nuvoton M261/M262/M263 Series. https://www.nuvoton.com/produc
ts/microcontrollers/arm-cortex-m23-mcus/m261-m262-m263-series/.

[2] ST-MCU-FINDER - STM32 and STMS8 product finder for mobile
devices and desktops - STMicroelectronics. https://www.st.com/en/
development-tools/st-mcu-finder.html.

[3] TockOS, Design. https://www.tockos.org/.

[4] Wecon Automatic Control Scheme of alarm system in Food Refrigera-
tion Room. https://www.we-con.com.cn/en/solutions_t/201.html.

[5S] Wecon Automatic Solution of the Slaughter Line Data Collection Man-
agement System. https://www.we-con.com.cn/en/solutions_t/221.html,

[6] Wecon LX3VM 2424M/3624M PLC. https://we-con.com.cn/en/produ
ct_page/186.html,

[71 Wecon Smart Water Supply. https://www.we-con.com.cn/en/solutions_
t/41.html.

[8] High-End Security Features for Low-End Microcontrollers. Zenodo,
March 2017.

[9] Tigist Abera, Raad Bahmani, Ferdinand Brasser, Ahmad Ibrahim,
Ahmad-Reza Sadeghi, and Matthias Schunter. DIAT: Data Integrity
Attestation for Resilient Collaboration of Autonomous Systems. In
NDSS, 2019.

[10] N. Almakhdhub, A. A. Clements, M. Payer, and S. Bagchi. BenchlIoT:
A Security Benchmark for the Internet of Things. In 2019 49th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 234-246, Los Alamitos, CA, USA, June
2019. IEEE Computer Society.

[11] ARM. Cortex-M4 Technical Reference Manual. https://developer.arm.
com/documentation/ddi0439/b/Data- Watchpoint-and-Trace- Unit/DWT
-Programmers-Model?lang=en|

[12] ARM. ARM MBED Uvisor. https://github.com/ARMmbed/uvisor,
March 2021.

[13] ARM Limited. PSA Security Model 1.0. https://developer.arm.com/-/
media/Files/pdf/PlatformSecurity Architecture/Architect/DEN0079_P
SA_SM_ALPHA-03_RCO1.pdf, February 2020.

[14] Nitay Artenstein. BROADPWN: Remotely Compromising Android and
IOS via a Bug in the Broadcom Wi-Fi Chipset. In Black Hat, page 31,
July 2017.

[15] Gal Beniamini. Over The Air - Vol. 2, Pt. 2: Exploiting The Wi-Fi
Stack on Apple Devices. https://googleprojectzero.blogspot.com/2017/
10/over-air- vol-2-pt-2-exploiting- wi-fi.html.

[16] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi,
and Emmanuel Stapf. SANCTUARY: ARMing TrustZone with user-
space enclaves. In NDSS, 2019.

[17] Franz Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi,
Christian Wachsmann, and Patrick Koeberl. TyTAN: Tiny trust anchor
for tiny devices. In Proceedings of the 52nd Annual Design Automation
Conference, San Francisco, CA, USA, June 7-11, 2015, pages 34:1—
34:6. ACM, 2015.

14

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]

[34]

[35]

[36]

Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long
Lu. Shreds: Fine-Grained Execution Units with Private Memory. In
2016 IEEE Symposium on Security and Privacy (SP), pages 56-71,
May 2016.

CISA. Havex ICS Alert (ICS-ALERT-14-176-02A). https://us-cert.cisa
.gov/ics/alerts/ICS- ALERT-14-176-02A, June 2014.

Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi,
and Mathias Payer. ACES: Automatic Compartments for Embedded
Systems. In 27th USENIX Security Symposium (USENIX Security 18),
pages 65-82, Baltimore, MD, August 2018. USENIX Association.

Abraham A. Clements, Naif Saleh Almakhdhub, Khaled S. Saab,
Prashast Srivastava, Jinkyu Koo, Saurabh Bagchi, and Mathias Payer.
Protecting Bare-Metal Embedded Systems with Privilege Overlays. In
2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose,
CA, USA, May 22-26, 2017, pages 289-303. IEEE Computer Society,
2017.

Cypress. Microcontroller portfolio Infineon + Cypress. https://www.cy
press.com/products/microcontrollers-mcus|

Eric Decker. TinyOS. https://github.com/tinyos/tinyos-main.

Alessandro Di Pinto, Younes Dragoni, and Andrea Carcano. TRITON:
The first ICS cyber attack on safety instrument systems. In Proc. Black
Hat USA, pages 1-26, 2018.

Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet
Dossier. https://www.wired.com/images_blogs/threatlevel/2010/11
/w32_stuxnet_dossier.pdf, November 2010.

Bo Feng, Alejandro Mera, and Long Lu. P2IM: Scalable and hardware-
independent firmware testing via automatic peripheral interface model-
ing. In 29th USENIX Security Symposium (USENIX Security 20), pages
1237-1254. USENIX Association, August 2020.

Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and
Ahmad-Reza Sadeghi. IMIX: In-process memory isolation EXtension.
In 27th USENIX Security Symposium (USENIX Security 18), pages 83—
97, Baltimore, MD, August 2018. USENIX Association.

Andy Greenberg. The Jeep Hackers Are Back to Prove Car Hacking
Can Get Much Worse. https://www.wired.com/2016/08/jeep-hackers-r
eturn-high-speed- steering-acceleration-hacks/,

Jonas Haglund and Roberto Guanciale. Trustworthy Isolation of DMA
Enabled Devices. In Deepak Garg, N. V. Narendra Kumar, and
Rudrapatna K. Shyamasundar, editors, Information Systems Security,
pages 35-55, Cham, 2019. Springer International Publishing.

Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber,
and David Kotz. Application memory isolation on ultra-low-power
MCUs. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 127-132, Boston, MA, July 2018. USENIX Association.

Norm Hardy. The confused deputy: (or why capabilities might have
been invented). SIGOPS Oper. Syst. Rev., 22(4):36-38, October 1988.

Josiah Hester, Travis Peters, Tianlong Yun, Ronald Peterson, Joseph
Skinner, Bhargav Golla, Kevin Storer, Steven Hearndon, Kevin Free-
man, Sarah Lord, Ryan Halter, David Kotz, and Jacob Sorber. Amulet:
An Energy-Efficient, Multi-Application Wearable Platform. In Proceed-
ings of the 14th ACM Conference on Embedded Network Sensor Systems
CD-ROM, pages 216-229, Stanford CA USA, November 2016. ACM.

Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias
Payer. Enforcing Least Privilege Memory Views for Multithreaded
Applications. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 393-405, Vienna
Austria, October 2016. ACM.

SANS Institute. Confirmation of a Coordinated Attack on the Ukrainian
Power Grid. https://www.sans.org/blog/confirmation-of-a-coordinated-
attack-on-the-ukrainian-power-grid/, January 2016.

Texas Instruments. INA226 High-Side or Low-Side Measurement, Bi-
Directional Current and Power Monitor with I12C Compatible Interface.
https://www.ti.com/lit/ds/symlink/ina226.pdf?ts=1641228884770&ref_|
url=https%253A%252F%252Fwww.ti.com%?252Fproduct%252FINA2
26.

Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, By-
oungyoung Lee, Xiangyu Zhang, and Dongyan Xu. Securing Real-Time
Microcontroller Systems through Customized Memory View Switching.
In 25th Annual Network and Distributed System Security Symposium,

https://www.nuvoton.com/products/microcontrollers/arm-cortex-m23-mcus/m261-m262-m263-series/
https://www.nuvoton.com/products/microcontrollers/arm-cortex-m23-mcus/m261-m262-m263-series/
https://www.st.com/en/development-tools/st-mcu-finder.html
https://www.st.com/en/development-tools/st-mcu-finder.html
https://www.tockos.org/
https://www.we-con.com.cn/en/solutions_t/201.html
https://www.we-con.com.cn/en/solutions_t/221.html
https://we-con.com.cn/en/product_page/186.html
https://we-con.com.cn/en/product_page/186.html
https://www.we-con.com.cn/en/solutions_t/41.html
https://www.we-con.com.cn/en/solutions_t/41.html
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-Programmers-Model?lang=en
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-Programmers-Model?lang=en
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-Programmers-Model?lang=en
https://github.com/ARMmbed/uvisor
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://googleprojectzero.blogspot.com/2017/10/over-air-vol-2-pt-2-exploiting-wi-fi.html
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-14-176-02A
https://us-cert.cisa.gov/ics/alerts/ICS-ALERT-14-176-02A
https://www.cypress.com/products/microcontrollers-mcus
https://www.cypress.com/products/microcontrollers-mcus
https://github.com/tinyos/tinyos-main
https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_dossier.pdf
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/
https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/
https://www.sans.org/blog/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid/
https://www.sans.org/blog/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid/
https://www.ti.com/lit/ds/symlink/ina226.pdf?ts=1641228884770&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FINA226
https://www.ti.com/lit/ds/symlink/ina226.pdf?ts=1641228884770&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FINA226
https://www.ti.com/lit/ds/symlink/ina226.pdf?ts=1641228884770&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FINA226

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varad-
harajan. TrustLite: A Security Architecture for Tiny Embedded De-
vices. In Proceedings of the Ninth European Conference on Computer
Systems, EuroSys 14, New York, NY, USA, 2014. Association for
Computing Machinery.

Donghyun Kwon, Jangseop Shin, Giyeol Kim, Byoungyoung Lee,
Yeongpil Cho, and Yunheung Paek. uXOM: Efficient eXecute-Only
memory on ARM cortex-m. In 28th USENIX Security Symposium
(USENIX Security 19), pages 231-247, Santa Clara, CA, August 2019.
USENIX Association.

Philip Levis and David Culler. Maté: A tiny virtual machine for sensor
networks. ACM SIGPLAN Notices, 37(10):85-95, October 2002.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. Multiprogramming a 64kB
computer safely and efficiently. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP’17, pages 234-251, New York,
NY, USA, October 2017. ACM.

Loic Duflot, Yves-Alexis Perez, and Benjamin Morin. What if you
can’t trust your network card? In RAID 2011, 2011.

Arm Ltd. ARM v7-M Architecture Reference Manual. https://develo
per.arm.com/documentation/ddi0403/latest/,

Alejandro Mera, Bo Feng, Lu Lu, and Engin Kirda. DICE: Automatic
emulation of DMA input channels for dynamic firmware analysis. In
2021 2021 IEEE Symposium on Security and Privacy (SP), pages 302—
318, Los Alamitos, CA, USA, May 2021. IEEE Computer Society.

Microchip. MCP2221A USB -USART/I2C Bridge. https://www.micr
ochip.com/wwwproducts/en/MCP2221A.

Microchip. New/Popular 32-bit Microcontrollers Products - Microchip
Technology Inc. https://www.microchip.com/ParamChartSearch/Chart
.aspx?branchID=211.

ST Microelectronics. Chrom-ART accelerator. https://www.st.com/con
tent/ccc/resource/training/technical/product_training/group0/06/38/cb/
60/21/70/4e/d8/STM32F7_System_DMA2D/tiles/STM32F7_System_.
DMAZ2D.pdf/jcr:content/translations/en.STM32F7_System_DMAZ2D.p
df.

ST Microelectronics. Managing memory protection unit in STM32
MCUs. https://www.st.com/resource/en/application_note/dm00272912
-managing- memory- protection- unit-in-stm32-mcus- stmicroelectronic
s.pdf, February 2020.

Daniele Midi, Mathias Payer, and Elisa Bertino. Memory Safety for
Embedded Devices with NesCheck. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, ASIA
CCS 17, pages 127-139, New York, NY, USA, 2017. Association for
Computing Machinery.

Mark S Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths
Demolished. page 15.

NSA. Ghidra. https://ghidra-sre.org/.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon,
Michael Steiner, and Gene Tsudik. VRASED: A Verified Hardware/-
Software Co-Design for Remote Attestation. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1429-1446, 2019.

Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon,
and Gene Tsudik. APEX: A Verified Architecture for Proofs of
Execution on Remote Devices under Full Software Compromise. In
29th USENIX Security Symposium (USENIX Security 20), pages 771—
788, 2020.

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rat-
tanavipanon, and Gene Tsudik. On the TOCTOU problem in remote
attestation. In ACM CCS 2021, 2020.

NXP. Product Selector — NXP. https://www.nxp.com/products/produ
ct-selector:PRODUCT-SELECTOR#/category/c731_c1770.

Michele Pelino. Predictions 2021: Technology Diversity Drives IoT
Growth. https://go.forrester.com/blogs/predictions-2021-technology-d
1versity-drives-1ot- growth/, October 2020.

Percepio. Percepio Tracealyzer - Stop Guessing with Visual Trace
Diagnostics. https://percepio.com/tracealyzer/.

[57] Schirra Sascha. Ropper - ROP gadget finder and binary information
tool. |https://scoding.de/ropper/, August 2014.

[58] Denis Selianin. Researching Marvell Avastar Wi-Fi: From Zero Knowl-
edge to Over-The-Air Zero-Touch RCE. page 61.

[59] A. Sensaoui, D. Hely, and O. Aktouf. Toubkal: A flexible and efficient
hardware isolation module for secure lightweight devices. In 2019 15th
European Dependable Computing Conference (EDCC), pages 31-38,
2019.

[60] Abderrahmane Sensaoui, Oum-El-Kheir Aktouf, David Hely, and
Stephane Di Vito. An In-depth Study of MPU-Based Isolation Tech-
niques. Journal of Hardware and Systems Security, 3(4):365-381,
December 2019.

[61] STMicroelectronics. ST-MCU-FINDER-PC - STM32 and STMS prod-
uct finder. https://www.st.com/en/development-tools/st-mcu-finder-pc
.html.

[62] Raoul Strackx, Frank Piessens, and Bart Preneel. Efficient Isolation
of Trusted Subsystems in Embedded Systems. In Sushil Jajodia
and Jianying Zhou, editors, Security and Privacy in Communication
Networks, pages 344-361, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[63] TrustedFirmware.org. Trusted Firmware M. https://ci-builds.trustedfir
mware.org/static-files/kabnlDn9dd263k V64sVM-gECWQbVueoH9h5
h8dROLDSxNJE2NTEzNjU4NTES5Ojk6 Y W5vbnltb3VzOmpvY190Zil
tLWIJ1aWXKLWRvY3MtbmlnaHRseS9s Y XNOU3RhY mx1QnVpbGQ
vY XJ0aWZhY3Q=/trusted- firmware-m/build/docs/user_guide/html/do
cs/introduction/readme.html.

[64] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection Strategies
for Direct Access to Virtualized I/O Devices. In USENIX 2008 Annual
Technical Conference, ATC’08, pages 15-28, USA, 2008. USENIX
Association.

[65] Miao Yu. An I/O Separation Model and Its Applications to On-demand
I/0 on Commodity Platforms. PhD thesis, 2019.

[66] Fengwei Zhang and Hongwei Zhang. SoK: A Study of Using Hardware-
Assisted Isolated Execution Environments for Security. In Proceedings
of the Hardware and Architectural Support for Security and Privacy
2016, HASP 2016, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[67] Zongwei Zhou. On-Demand Isolated I/O for Security-sensitive Appli-
cations on Commodity Platforms. PhD thesis, 2014.

[68] Zongwei Zhou, Virgil D. Gligor, James Newsome, and Jonathan M.
McCune. Building Verifiable Trusted Path on Commodity X86 Com-
puters. In Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP ’12, pages 616-630, USA, 2012. IEEE Computer Society.

APPENDIX

A. Survey on availability of hardware security features on
MCUs

The main isolation components of the Cortex-M embed-
ded architecture are the MPU and TrustZone. These two
components are optional, and their support depends on the
MCU vendor implementation. Also, each component is only
supported by specific Cortex-M micro-architecture profiles.
The MPU is supported by Armv6-M (Cortex-M0+), Armv7-M
(Cortex-M3/M4/M7) and Armv8-M (Cortex-M23/M33/M55),
whereas TrustZone is exclusively supported by the Armv8-M
(Cortex-M23/M33/M55).

To verify the current availability of the ARM TrustZone
feature in commercial MCU devices, we surveyed the complete
portfolio of the top five global MCU vendors. The results
depicted in Figure [9] demonstrates that TrustZone-enabled
devices are still scarce. In the best case, ST Microelectron-
ics commercializes 16 parts which represents only 1.6% of
its portfolio. In contrast, Cypress/Infineon has no Armv8-M
commercial devices at all. Also, no vendor currently offers
commercial devices for the Cortex-M55 micro-architecture.

https://developer.arm.com/documentation/ddi0403/latest/
https://developer.arm.com/documentation/ddi0403/latest/
https://www.microchip.com/wwwproducts/en/MCP2221A
https://www.microchip.com/wwwproducts/en/MCP2221A
https://www.microchip.com/ParamChartSearch/Chart.aspx?branchID=211
https://www.microchip.com/ParamChartSearch/Chart.aspx?branchID=211
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/06/38/cb/60/21/70/4e/d8/STM32F7_System_DMA2D/files/STM32F7_System_DMA2D.pdf/jcr:content/translations/en.STM32F7_System_DMA2D.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/06/38/cb/60/21/70/4e/d8/STM32F7_System_DMA2D/files/STM32F7_System_DMA2D.pdf/jcr:content/translations/en.STM32F7_System_DMA2D.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/06/38/cb/60/21/70/4e/d8/STM32F7_System_DMA2D/files/STM32F7_System_DMA2D.pdf/jcr:content/translations/en.STM32F7_System_DMA2D.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/06/38/cb/60/21/70/4e/d8/STM32F7_System_DMA2D/files/STM32F7_System_DMA2D.pdf/jcr:content/translations/en.STM32F7_System_DMA2D.pdf
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/06/38/cb/60/21/70/4e/d8/STM32F7_System_DMA2D/files/STM32F7_System_DMA2D.pdf/jcr:content/translations/en.STM32F7_System_DMA2D.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00272912-managing-memory-protection-unit-in-stm32-mcus-stmicroelectronics.pdf
https://ghidra-sre.org/
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR#/category/c731_c1770
https://www.nxp.com/products/product-selector:PRODUCT-SELECTOR#/category/c731_c1770
https://go.forrester.com/blogs/predictions-2021-technology-diversity-drives-iot-growth/
https://go.forrester.com/blogs/predictions-2021-technology-diversity-drives-iot-growth/
https://percepio.com/tracealyzer/
https://scoding.de/ropper/
https://www.st.com/en/development-tools/st-mcu-finder-pc.html
https://www.st.com/en/development-tools/st-mcu-finder-pc.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html
https://ci-builds.trustedfirmware.org/static-files/ka6nlDn9dd263kV64sVM-gECWQbVueoH9h5h8dROLD8xNjE2NTEzNjU4NTE5Ojk6YW5vbnltb3VzOmpvYi90Zi1tLWJ1aWxkLWRvY3MtbmlnaHRseS9sYXN0U3RhYmxlQnVpbGQvYXJ0aWZhY3Q=/trusted-firmware-m/build/docs/user_guide/html/docs/introduction/readme.html

1429 1481

Cortex-M devices
MO/MO+/M3/M4/M7
M23/M33 without TZ

. M23/M33 with TZ

361

119

12 37 s

o 16 [6 6
Microchip/Atmel

ST Microelectronics Cypress / Infineon NXP Nuvoton

Fig. 9: ARM TrustZone (TZ) availability in the portfolio of
five top global MCU Vendors in February 2021 . [22], [45],
(1], (541, [61].

DMA (100%)
MPU (77.1%)

220 727 16

TrustZone (1.66%)

Fig. 10: MPU and DMA controller availability in the ST
Microelectronics portfolio in February 2021. [2].

The current availability is slightly better compared to the total
absence of devices supporting this technology around 2017-
2018 as observed by [20].

B. Power requirements for peripheral operations

Figure [T1] depicts the power consumption recorded in a
synchronized continuous loop. In all the cases DMA operations
using D-Box procedures are more efficient.

C. Performance overhead details

Table z] details the minimum, average, and maximum per-
formance overhead observed in our experiments with USART,
I2C, SPI, and ADC peripherals. In general, the use of DMA is
optimized for larger transfers. We observed in all cases that the
overhead is less than 10% when the transfer is 25 or more bytes
long. Transfers involving more than 25 bytes are common for
communication protocols (e.g., the MQTT protocol, which is
widely used by IoT devices).

Operation Pool [%] IT [%] DMA [%]
Min Avg Max [Min Avg Max |Min Avg Max
USART-TX | 0.8 38 463 03 1.5 160 {03 12 133
USART-RX |-24 -02 29 |29 -06 16 |-27 -0.1 28
SPI-TX 2.6 104 134.5|1.0 46 732 |09 43 728
SPI-RX 76 03 114013 47 542 |08 3.0 355
12C-TX -10.0 -1.1 103.3|-0.5 1.7 386 [109 123 456
I2C-RX 1.9 94 89.7 |-0.7 1.6 339 |06 80 145
ADC -804 -679 884 |-869 -77.2 727 |1.1 42 340
Average -13.60 -6.48 82.73|-12.63 -9.12 41.46|1.70 4.71 31.21

TABLE X: Performance overhead of D-Box versus Pooling
(Pool), Interrupt (IT) and Insecure DMA (DMA) methods.

16

D. Acronyms
ADC - Analog to Digital Converter.
CAN - Controller Area Network.
GPIO - General Purpose Input/Output.
HAL - Hardware abstraction layer.
I2C - Inter-Integrated Circuit.
MMIO - Memory-mapped Input/Output.
MQTT - Message Queuing Telemetry Transport.
PLC - Programmable Logic Controller.
ROP - Return Oriented Programming.
SCADA - Supervisory Control And Data Acquisition.
SPI - Serial Peripheral Interface.
SVC - Supervisor Call.
TCB - Thread Control Block.

USART - Universal Synchronous/Asynchronous Receiver/-
Transmitter.

USART tx

50
40 1
301
204
104

et —

0 500 1000

SPI Tx

50
401
304
204
104

0 500 1000

50

USART rx

40 1
301
204
104

50

500 1000
SPIrx

401
304
204
104

500 1000

12€ tx
50
o—
301
20

104

0

0 500 1000
ADC

50
407 g ———————
s0{ [
201

104

0

0 500 1000

12C rx

0 500 1000

— Int.

~— Pool.
—— DMA
—— D-Box

Fig. 11: Power requirements of peripheral operations observed over 1000 samples using Pooling, Interrupts, Insecure DMA, and
D-Box methods.

17

	Introduction
	Threat model and assumptions
	Motivation
	Background
	The system address map of the Cortex-M
	The Memory Protection Unit
	The DMA controller operation
	Open challenges
	Uncertainty on protections
	Lack of holistic security solutions
	Hardware availability and diversity
	Impractical security policy definition
	Backward compatibility and refactoring

	System Design
	D-Box reference architecture
	D-Box MPU region definition
	Background region (-1)
	Syscalls region (0)
	Task code region (1)
	Task stack region (2)
	User-defined regions (3), (4), (5)
	Kernel Code, and stack and heap regions (6, and 7)

	DMA controller reconnaissance
	Kernel hardening to support DMA operations
	DMA policy definition
	Signal and exception handling
	Signal registration and notification
	 Exception handling

	Implementation
	Kernel hardening and extensions
	The DMA task and data flow

	Evaluation
	Security analysis
	Security metrics
	Quantitative security analysis
	Qualitative Security Analysis

	Performance analysis
	Micro-benchmarking
	Macro-benchmark of peripheral operations

	Power analysis
	Memory overhead analysis
	Case study: Securing a Programmable Logic Controller
	Programmable Logic Controllers
	Firmware characteristics
	Threat analysis
	Solution
	Evaluation and analysis

	Discussion
	The capability-based security model properties and its limitations
	D-Box trusted computing base
	The ARMv8-M security extensions
	Compatibility of D-Box with other solutions

	Related Work
	DMA protection
	Compartmentalization
	Software-based memory compartmentalization
	Hardware-assisted memory isolation

	Conclusion
	References
	Appendix
	Survey on availability of hardware security features on MCUs
	Power requirements for peripheral operations
	Performance overhead details
	Acronyms

