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What Are Rootkits?

• Tools used by attackers after compromising a system

– hide presence of attacker
– allow for return of attacker at later date
– gather information about environment
– attack scripts for further compromises

• Traditionally trojaned set of userland applications

– system logging (syslogd)
– system monitoring (ps, top)
– user authentication (login, sshd)
– etc.



TU Vienna / UC Santa Barbara Kernel-Level Rootkit Detection [3]

Kernel-Level Rootkits

• New type of rootkit that modifies system kernel

• Modifies kernel data structures

– process listing
– module listing

• Intercepts requests from userspace applications

– system call boundary
– VFS fileops struct



TU Vienna / UC Santa Barbara Kernel-Level Rootkit Detection [4]

Why Are Kernel-Level Rootkits Bad?

• Traditional rootkits easily detected with filesystem integrity checkers

– e.g., Tripwire
– kernel, however, controls view of system for userspace applications

• Malicious kernel code can intercept attempts by userspace detector to
find rootkits

– remove rootkit module from listing
– prevent or modify reads to /dev/kmem
– etc.

• Thus, theoretically kernel-level rootkits are in the worst case undetectable
from userspace
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Current Detection Methods

• chkrootkit

– userspace, signature-based detector

• kstat, rkstat, St. Michael

– kernelspace, signature-based detector
– implemented as kernel modules or use /dev/kmem

• Limitations of current detection methods

– rootkit must be loaded in order to detect it
– thus, detectors can be thwarted by kernel-level rootkit
– also suffer from limitations of signature-based detection
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Our Detection Method

• Linux kernel exports well-defined interface to modules

– observation: kernel rootkits (generally) violate interface

• From defined interface, we extract a specification of allowed modifications
of kernel memory

• Statically analyze kernel module binaries to determine whether kernel-
module interface is violated

– i.e., whether module performs writes to invalid kernel addresses
– analysis performed after module load but before initialization, thus

code deemed malicious is never allowed to execute
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Behavioral Specifications

• Specifications composed of set of allowed operations legitimate kernel
modules may perform

• Examples of legitimate operations

– registering device with kernel
– accesses to devices mapped into kernel memory
– overwriting exported function pointers for event callbacks

• Examples of illegal operations

– replacing system call table entries (knark)
– replacing VFS fileops (adore-ng)
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Example: system call table hijacking

orig_getuid = sys_call_table[__NR_getuid];
sys_call_table[__NR_getuid] = give_root;
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Example: VFS hijacking

pde = proc_find_tcp();
o_get_info_tcp = pde->get_info;
pde->get_info = n_get_info_tcp;
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Static Analysis of Kernel Module Binaries

• Symbolic execution

– simulated program execution using symbols rather than actual input
– machine state simulated as logical expressions using symbols

• Code sections of module disassembled and references to kernel symbols
patched with actual values

• Initial machine state created, and symbolic execution begun from module
initialization routine

– machine state represented as set of registers, stack, and memory
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Detecting Malicious Writes to Kernel Memory

• Kernel address loads taint destination register or memory

• Monitor writes to loaded kernel addresses or addresses calculated from
a loaded kernel address

– if destination address is not explicitly permitted by whitelist
specification derived from legitimate kernel-module interface, write
is labeled malicious
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Example: detecting system call table hijacking

• kmodscan output

kmodscan: initializing scan for rootkits/all-root.o
[...]
kmodscan: DETECTED WRITE TO KERNEL MEMORY [c0347df0] at [.text+50]
[...]
kmodscan: 1 malicious write detected, denying module load

• offending instruction

50: c7 05 60 00 00 00 00 00 00 00 movl $0x0,0x60

• corresponding source line

sys_call_table[__NR_getuid] = give_root;
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Example: detecting VFS hijacking

• kmodscan output

kmodscan: initializing scan for rootkits/adore-ng.o
[...]
kmodscan: DETECTED WRITE TO KERNEL MEMORY [c03e31b8] at [.text+d74]
[...]
kmodscan: 7 malicious writes detected, denying module load

• offending instruction

d74: c7 40 20 00 00 00 00 movl $0x0,0x20(%eax)

• corresponding source line

pde->get_info = n_get_info_tcp;
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Challenges in Static Analysis Approach [1]

• Conditional branches

– generally must explore both continuations of conditional branch
– our system checkpoints machine state and executes one branch after

another
– results in exponential path explosion, mitigated by small size of module

code

• Loops

– without loop detection, symbolic execution would not terminate
– however, cannot simply mark instructions as executed
– we utilize dominator tree-based loop removal algorithm [Aho86]
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Challenges in Static Analysis Approach [2]

• Data-dependent control flow

– control flow targets may be based in part on program input and may
be impossible to determine statically

– possible to probabilistically determine targets, e.g. unreachable code
analysis

– our system currently labels module malicious and terminates execution,
since no legitimate modules utilized unresolvable targets in experiments

• Approach does not consider /dev/kmem-based rootkits

– userspace programs should not be allowed to write directly to
kernelspace
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Experimental Setup

• Userspace prototype developed for Linux 2.6 kernels: kmodscan

– analyzes ELF x86 modules
– developed against two rootkits (knark, adore-ng)

• Detection capability evaluated against seven rootkits that implement a
variety of different malicious functions

• False positive rate and performance overhead evaluated against entire
Fedora Core 1 x86 default kernel module set
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Detection Evaluation Results

Rootkit Technique Description Detected?

adore syscalls File, directory, process, and socket hiding Yes
Rootshell backdoor

all-root syscalls Gives all processes UID 0 Yes

kbdv4 syscalls Gives special user UID 0 Yes

kkeylogger syscalls Logs keystrokes from local and network logins Yes

rkit syscalls Gives special user UID 0 Yes

shtroj2 syscalls Execute arbitrary programs as UID 0 Yes

synapsys syscalls File, directory, process, socket, and module hiding Yes
Gives special user UID 0

Module Set Modules Analyzed Detections Detection Rate

Evaluation rootkits 7 7 100%
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False Positive Evaluation Results

Module Set Modules Analyzed Detections Misclassification Rate

Fedora Core 1 modules 985 0 0%
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Performance Overhead Evaluation Results
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Conclusions

• Kernel-level rootkits are an increasing threat to system security

• Presented a behavioral specification-based kernel-level rootkit prevention
mechanism enforced by binary static analysis

• Evaluted detection system against real-world Linux distribution

– perfect detection rate against popular real-world kernel-level rootkits
– low (non-existent) false positive rate against entire kernel module set

for Fedora Core 1
– low performance overhead
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Future Work

• Formalize specification of kernel-module interface and behavior of kernel-
level rootkits

• Increase sophistication of static analysis technique

• Integrate prototype into Linux 2.6 kernel module loader


