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• Web servers are popular targets

• Wide deployment

• Exploitable custom applications

• Need to detect and mitigate impact of 
intrusions

• What systems exist?

Motivation



Related Work

• Network-based misuse detectors

• Snort [Roesch]

• Application-based misuse detectors

• Embedded intrusion detection for Apache 
[Almgren, Lindqvist]

• Lightweight log analysis [Almgren et al]
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System Overview

• Based on STAT framework

• Stateful analysis on multiple event streams

• High-level modeling of complex, multi-step  
attacks

• Highly available, configurable

• Comprehensive set of generic signatures



STAT Framework

• Domain-independent analysis engine

• Attacks modeled as composition of states 
and transitions

• IDS can be assembled by composing 
language extensions, event providers, attack 
scenarios, and response functions



WebSTAT Architecture
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Web Extension
class HTTPRequest : public STATEvent

{

public:

string request;         // Client request

string userAgent;       // User agent

string encodedRequest;  // Encoded request

bool isRequestEncoded;  // Encoded flag

};



Web Event Provider

• Log-based event provider

• Parses Common or Extended Log 
Format (CLF/ELF)

• Creates and inserts HTTPRequest events 
into STAT core

• Network, host-based event providers
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Cookie Stealing

s0
Cookie 
stolen

Cookie 
in use

[LOG | NET] New cookie
issued or used

[LOG | NET] Cookie
used by different IP

[NET] Session timeout,
cookie revocation or expiration

[LOG | NET] Cookie
used by same IP



A Non-Trivial Scenario



Buffer Overflow I

s0
Buffer 

overflow 
attempted

[LOG] Request length
exceeds threshold

[LOG] Request
contains machine code



Buffer Overflow II

s0
Stream 
opened

Machine 
code

Buffer 
overflow

[NET] Stream opened

[NET] Stream closed

[NET] Machine
code detected

[LOG] Request logged

Timeout



Docroot Escape

s0 File read
File 

requested

[HOST | LOG] File outside
docroot requested by client

[HOST] File read by
web server process

Timeout
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Evaluation

• Evaluate performance in production setting

• Experimental setup

• Apache 2.0.40 / RedHat Linux 8.0

• WebStone 2.5



Throughput



Response Time
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Future Work

• Develop more multi-domain attack 
scenarios

• Integrate anomaly-detection component to 
automatically generate new signatures



Conclusion

• Intrusion detection for web servers can be:

• stateful, modeling complex attacks

• highly configurable with no downtime

• high performance with little overhead

• deployed in production environments

• http://www.cs.ucsb.edu/~rsg/STAT/


