
A Stateful Intrusion
Detection System for

World-Wide Web Servers

Giovanni Vigna
William Robertson

Vishal Kher
Richard Kemmerer

{vigna, wkr, vkher, kemm}@cs.ucsb.edu

Outline

• Motivation and Related Work

• System Overview

• Evaluation

• Conclusions and Future Work

• Web servers are popular targets

• Wide deployment

• Exploitable custom applications

• Need to detect and mitigate impact of
intrusions

• What systems exist?

Motivation

Related Work

• Network-based misuse detectors

• Snort [Roesch]

• Application-based misuse detectors

• Embedded intrusion detection for Apache
[Almgren, Lindqvist]

• Lightweight log analysis [Almgren et al]

Outline

• Motivation and Related Work

• System Overview

• Evaluation

• Conclusions and Future Work

System Overview

• Based on STAT framework

• Stateful analysis on multiple event streams

• High-level modeling of complex, multi-step
attacks

• Highly available, configurable

• Comprehensive set of generic signatures

STAT Framework

• Domain-independent analysis engine

• Attacks modeled as composition of states
and transitions

• IDS can be assembled by composing
language extensions, event providers, attack
scenarios, and response functions

WebSTAT Architecture
WebSTAT

Event sources

Web server
log

Host auditing
system

Network driver

Host event
provider

Network event
provider

Web server
event provider

STAT Core

Attack scenarios

Web extension

Host extension

Network
extension

Response
modules

Event
queue

Web Extension
class HTTPRequest : public STATEvent

{

public:

string request; // Client request

string userAgent; // User agent

string encodedRequest; // Encoded request

bool isRequestEncoded; // Encoded flag

};

Web Event Provider

• Log-based event provider

• Parses Common or Extended Log
Format (CLF/ELF)

• Creates and inserts HTTPRequest events
into STAT core

• Network, host-based event providers

Pattern Matching

s0
Attack

detected

[LOG] Request
matches pattern

Pattern Matching

s0
Attack

detected

[LOG] Request
matches pattern

Pattern Matching

s0
Attack

detected

[LOG] Request
matches pattern

Pattern Matching

s0
Attack

detected

[LOG] Request

matches pattern

Pattern Matching

s0
Attack

detected

[LOG] Request

matches pattern

Cookie Stealing

s0
Cookie
stolen

Cookie
in use

[LOG | NET] New cookie
issued or used

[LOG | NET] Cookie
used by different IP

[NET] Session timeout,
cookie revocation or expiration

[LOG | NET] Cookie
used by same IP

A Non-Trivial Scenario

Buffer Overflow I

s0
Buffer

overflow
attempted

[LOG] Request length
exceeds threshold

[LOG] Request
contains machine code

Buffer Overflow II

s0
Stream
opened

Machine
code

Buffer
overflow

[NET] Stream opened

[NET] Stream closed

[NET] Machine
code detected

[LOG] Request logged

Timeout

Docroot Escape

s0 File read
File

requested

[HOST | LOG] File outside
docroot requested by client

[HOST] File read by
web server process

Timeout

Outline

• Motivation and Related Work

• System Overview

• Evaluation

• Conclusions and Future Work

Evaluation

• Evaluate performance in production setting

• Experimental setup

• Apache 2.0.40 / RedHat Linux 8.0

• WebStone 2.5

Throughput

Response Time

Outline

• Motivation and Related Work

• System Overview

• Evaluation

• Conclusions and Future Work

Future Work

• Develop more multi-domain attack
scenarios

• Integrate anomaly-detection component to
automatically generate new signatures

Conclusion

• Intrusion detection for web servers can be:

• stateful, modeling complex attacks

• highly configurable with no downtime

• high performance with little overhead

• deployed in production environments

• http://www.cs.ucsb.edu/~rsg/STAT/

